"

Cookies ussage consent

Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our site without changing the browser settings you grant us permission to store that information on your device.

I agree, do not show this message again.

Morphology-engineering of ultrathin In2S3 / mesoporous TiO2 heterojunctions via precursor-directed synthesis for efficient photocatalysis

YU-PEI LI1,2, FENG-WEI CHEN2, XIAO-JING WANG2, BEN-QIAN LU2, YA-LI ZHANG2, JUN ZHAO2,3,* , YONG-QIANG CHENG1,* , DONG ZHANG1

Affiliation

  1. Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Sci
  2. College of Science, Hebei University of Science and Technology, Shijiazhuang, 050018, China
  3. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, Changchun,

Abstract

Synthesis of nanostructured materials with unique composition, size and morphology plays a crucial role in designing high-efficient photocatalysts. In this work, a novel precursor-directed synthetic route is developed to construct ultrathin In2S3/mesoporous TiO2 heterojunction by in situ decorating TiO2 on the surface of ultrathin In2S3 nanoflakes. The solid-state titanium alkoxide is an important precursor, which can be converted directly to porous TiO2 for increasing the specific surface area of TiO2. Meanwhile, the ultrathin In2S3 nanoflakes are in situ constructed via precursor-directed synthetic process with the thickness less than 3nm, which can supply numerous specific surface areas and a large number of active sites for the nucleation of TiO2 during the hydrothermal synthesis and result in the uniformly dispersed TiO2 nanoparticles. The results confirm that the constructed In2S3/TiO2 heterojunction possesses high specific surface area up to 139.72 m2/g. More importantly, the employment of unique synthetic method together with heterostructure design not only broaden the light absorption of catalyst to visible light region but also create tight interface bonding between In2S3 and TiO2 to achieve higher efficiency in charge transfer and separation. Thus, the obtained catalysts exhibit outstanding photoactivity for methyl orange (MO) degradation with visible light irradiation. This current work presents a simple and effective avenue for constructing naonomaterials with morphology control, which may be promising for rational design of solar conversion and storage devices..

Keywords

Nanostructured materials, Precursor-directed, In2S3/TiO2 heterojunction, Solid-state titanium alkoxide, Methyl orange (MO) degradation.

Submitted at: May 31, 2021
Accepted at: June 7, 2022

Citation

YU-PEI LI, FENG-WEI CHEN, XIAO-JING WANG, BEN-QIAN LU, YA-LI ZHANG, JUN ZHAO, YONG-QIANG CHENG, DONG ZHANG, Morphology-engineering of ultrathin In2S3 / mesoporous TiO2 heterojunctions via precursor-directed synthesis for efficient photocatalysis, Journal of Optoelectronics and Advanced Materials Vol. 24, Iss. 5-6, pp. 272-285 (2022)