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In this paper, we propose a modified multi-mode rate equation model to numerically study the chaotic dynamics of a weak 
resonant-cavity Fabry-Perot laser diode (WRC-FPLD) subject to fiber Bragg grating (FBG) feedback. The simulated results 
show that, by adjusting the Bragg wavelength of FBG, different longitudinal mode of the WRC-FPLD can be chosen to 
become a lasing mode. Under suitable feedback strength, such a lasing mode can operate at a chaotic state, and the 
bandwidth of the chaotic signal increases firstly and then decreases with the increase of k, which is consistent with our 
previously reported experimental results. Furthermore, the influences of the reflected bandwidth of FBG and the frequency 
detuning between the central wavelength of FBG and the lasing longitudinal mode on the chaotic bandwidth are 
investigated systematically, and the results demonstrate that the wavelength and bandwidth of the chaotic signal can be 
controlled to a certain extent through adjusting the related parameters of FBG. 
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1. Introduction 
 

Since chaos synchronization of complex systems was 

first demonstrated by Pecora and Carroll in 1990 [1], 

optical chaos and its applications have attracted extensive 

attention [2-23]. In particular, for the application of chaos 

in secure optical communication [8-23], many research 

groups have carried out a series of fruitful explorations, in 

which two significant investigations were that Van 

Wiggeren et al. reported a chaotic optical communication 

experiment in 1998 [8] and Argyris et al. conducted a field 

experiment of SL-based chaotic communication using a 

commercial fiber network in Athens in 2005 [9]. In optical 

chaotic communication systems, communication 

transmission capacity is one of the most concerned 

problems. In general, there are two ways to improve the 

transmission capacity of optical chaotic communication 

system, where one is to increase the single channel 

information transmission rate and the other is to adopt 

wavelength division multiplexing (WDM) technology. For 

the former, based on the nonlinear electro-optic phase 

dynamics, Lavrov et al. experimentally reported 10 Gbit/s 

single-channel long-distance optical chaotic 

communication in 2010 [10]. Based on the nonlinear 

dynamics of a modulator, Ke et al. experimentally 

demonstrated 30 Gbit/s signal over 100 km transmission 

through adopting duobinary modulation format in 2018 

[11]. For the latter, some theoretical and experimental 

investigations have been explored on the WDM 

technology application in optical chaotic communication 

[19-23]. For example, Paul et al. experimentally 

demonstrated two channels chaotic optical communication 

over a transmission path by using two external-cavity 

distributed feedback (DFB) semiconductor lasers (SLs) to 

generate dual-channel chaotic carriers [19]. Based on two 

pairs of Nd:YVO4 microchip lasers operating at different 

wavelengths, Matsuura et al. initially realized one-way 

chaotic secure transmission of two-way information in 

WDM systems [20]. Zhang et al. theoretically studied 

WDM transmission of chaotic optical communication, and 

implemented a comparison between chaotic WDM optical 

communication and traditional WDM optical 

communication [21]. Even so, we have noticed that few 

experimental reports have been implemented on chaotic 

WDM optical communication above two channels so far. 

It is generally known that SLs are the most commonly 

used optical chaos sources since they are relatively easy to 

be driven into chaos under an external disturbance 

including optical feedback, optoelectronic feedback or 

optical injection [24-27]. For an SL-based chaotic WDM 

optical communication, wavelength tunability and 

bandwidth controllability of chaotic carriers are two key 

indicators, where the former can establish the desired 

wavelength channels and the latter can increase single-

channel transmission rate and reduce the crosstalk among 

channels. Among different types of SLs, DFB-SLs have 

been widely used as chaotic sources, but their wavelength 

tunability is relatively poor. Compared with DFB-LD, 

Fabry-Perot laser diodes (FPLDs) possess better 

wavelength tunability due to weaker mode selection. Via a 

wavelength-selected optical feedback element, since a 

FPLD under optical feedback can oscillate at different 
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longitude mode, the central wavelength of the FPLD-based 

chaotic resource can be tuned within a relatively large 

range. Relative to the traditional FPLDs, the mode 

selection is weaker in weak-resonant-cavity Fabry-Perot 

laser diodes (WRC-FPLDs) due to their longer cavity 

length and lower front-end reflectivity [28-30]. As a result, 

the chaotic signal with larger tuned range can be generated 

by WRC-FPLDs. Recently, our group proposed and 

experimentally demonstrated a scheme for achieving a 

wavelength-tunable and bandwidth-controllable chaotic 

source [28] by combining a WRC-FPLD with a fiber 

Bragg grating (FBG), but related theoretical study is still 

lack. 

Based on above considerations, in this paper, we 

propose a modified multi-mode rate equation model to 

characterize the chaotic dynamical system based on a 

WRC-FPLD subject to FBG feedback. The simulated 

results show that the wavelength of the chaotic signal can 

be adjusted through varying the central wavelength of 

FBG, and the chaotic bandwidth can be controlled by 

changing the feedback coefficient k, which is in agreement 

with our previous report [28]. Furthermore, we analyze the 

influences of the reflected bandwidth of FBG and the 

frequency detuning Δf between the central wavelength of 

FBG and the lasing longitudinal mode of the laser on the 

chaotic bandwidth.  

 

 
2. Theory model  
 

Based on the multi-mode rate equation model of SLs 

[31], further taking into account FBG feedback [32], the 

modified rate equations governing dynamics of the WRC-

FPLD subject to FBG feedback can be described as 

follows: 
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where the subscript m corresponds to the m-th longitudinal 

mode of WRC-FPLD, M is the considered total mode 

number of WRC-FPLD. E is the slowly varied complex 

amplitude of the electric field, and |E(t)|2 corresponds to 

the photon number. N, N0, and Nth are the carrier number, 

transparent carrier number and threshold carrier number, 

respectively. α is the line-width enhancement factor, γ is 

the cavity decay rate, γe is the carrier decay rate. k is the 

feedback coefficient, τ is the feedback delay time, C is the 

normalized current to the threshold current (C takes 1 at 

threshold). fm is the m-th longitudinal mode frequency of 

the free running WRC-FPLD, and Δfm (= fg – fm, where fg 

is the Bragg frequency of FBG) is the frequency deviation 

of the m-th mode from the Bragg frequency of FBG. The 

frequency detuning Δf = fg – f, where f is the frequency of 

the mode nearest to the FBG. * denotes convolution, r(t) is 

the impulse response of the FBG. β is the spontaneous 

emission factor, and the spontaneous emission noise is 

represented by the Langevin noise ζm(t), which are 

assumed to be Gaussian white noise with unity intensity 

and zero mean. The mode-dependent optical gain is 

assumed to be a parabolic profile with a maximum 

centered at mc-th mode, and it can be defined as: 
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where gc is the differential gain factor, and s is the gain 

saturation parameter. ΔfL is the mode interval, Δfg is the 

gain bandwidth of the gain material. 

The impulse response of the FBG r(t) is given by the 

inverse Fourier transform of the frequency response of the 

FBG: 
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where kB is the magnitude of the coupling coefficient of 

the FBG. δ represents the phase mismatch between the 

counter-propagating modes and equals to ngΩ/c, where ng 

is the group index of the fiber and c is the speed of light in 

vacuum. L is the length of the FBG. For simplicity, a 

single-mode uniform FBG is assumed, whose reflection 

bandwidth can be approximated by ckB/πng.  

 

 
3. Results and discussion  
 

Above multi-mode rate equations can be solved by 

adopting fourth-order Runge-Kutta algorithm. During the 

calculations, the used parameters are set as follows [33], 

[34]: a = 6, γ = 4.3×102 ns-1, γe = 1 ns-1, β = 5×10-7 ns-1, N0 

= 7.3×107, Nth = 2.1×108, gc = 3.2×10-6 ns-1, s = 1.0×10-7, 

ΔfL = 70 GHz, Δfg = 1.4×104 GHz, τ = 4 ns, C = 2, ng = 

1.45, L = 20 mm. The total mode number M in a free-

running WRC-FPLD is assumed to be 21 after considering 

the computing ability of the computer.  

Fig. 1 shows the optical spectrum of a free-running 

WRC-FPLD. For convenience of description, the main 

lasing mode located at 1550.24 nm is marked as “11-th 

mode”, and the other modes are marked as from “10-th 

mode” to “1-th mode” in the short-wave direction, and 

from “12-th mode” to “21-th mode” in the long-wave 

direction, respectively. The longitudinal modes 

distribution profile is not a strict Lorentz line due to the 

noise. 

After introducing a FBG filtered feedback, different 

modes will experience different losses. In particular, when 

the reflected bandwidth of FBG is smaller than the mode 

interval and meanwhile the filtered feedback is strong 

enough, only one longitudinal mode oscillates. As a result, 

by varying the Bragg wavelength of the FBG, different 
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longitudinal mode can be chosen to become a lasing mode. 

Here, we take the cases that the Bragg wavelength of the 

FBG is respectively identical to the oscillated wavelength 

of “13-th mode”~“9-th mode” as examples. Fig. 2 shows 

the time series (first column), power spectra (second 

column) and optical spectra (third column) of the WRC-

FPLD subject to FBG filtered feedback with a feedback 

coefficient k = 6 ns-1. Here, kB of FBG takes 100 m-1, and 

the corresponding reflected bandwidth is 6.6 GHz, which 

is smaller than the mode interval of the free running WRC-

FPLD. As shown in this diagram, by adjusting the Bragg 

wavelength of FBG, different mode can be individually 

stimulated with a side-mode suppression rates (SMSR) of 

>30 dB. Moreover, under k = 6 ns-1, the time series and 

power spectra demonstrate that these selected modes have 

been driven into the chaotic states. 

 

 

 
 

Fig. 1. Optical spectrum of a free running WRC-FPLD, where the 11-th mode is the main lasing mode located at 1550.24 nm 

(color online) 

 

 
 

Fig. 2. Time series (Column 1), power spectra (Column 2) and optical spectra (Column 3) of the WRC-FPLD subject to FBG         

filtered feedback, where the Bragg wavelength of FBG equals to the wavelength of “13-th mode” (Row a), “12-th mode” (Row 

b), “11-th mode” (Row c), “10-th mode” (Row d) and “9-th mode” (Row e) of the free running WRC-FPLD, respectively, where 

the orange lines in the column 3 are the reflection spectra of FBG. The feedback coefficient k = 6 ns-1, kB = 100 m-1 

(corresponding reflected bandwidth of the FBG is 6.6 GHz), Δf = 0 (color online) 
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Next, we analyze the influence of the feedback 

coefficient k on the chaotic bandwidth of power spectrum. 

Here, the bandwidth is the standard bandwidth estimated 

as the span between DC and the frequency in which 

contains 80% of the energy. We take the case that the 

Bragg wavelength of the FBG λB is equal to the 

wavelength of the 12-th mode (=1550.80 nm) as an 

example. Fig. 3 displays the time series, power spectra and 

optical spectra of the WRC-FPLD subject to filtered 

feedback provided by the FBG with kB = 100 m-1 and 

different feedback coefficient k. For k = 0 (first row), the 

WRC-FPLD is at free-running, the time series (Fig. 3 (c1)) 

shows almost a constant value with small fluctuations due 

to the noise, and therefore the dynamic state is the stable 

state. For k = 6 ns-1 (second row), the 12-th mode obtains 

more feedback power to become the lasing mode while the 

other modes are suppressed due to mode competition. The 

time series (Fig. 3 (a2)) exhibits relatively large 

fluctuations, the power spectrum (Fig. 3 (b2)) is 

continuous and enhanced within 0-10 GHz, and the optical 

spectrum (Fig. 3 (c2)) is obviously broadened. As a result, 

the laser is driven into a chaotic state, and the chaotic 

bandwidth is about 5.0 GHz. For k = 40 ns-1 (third row), 

the optical spectrum (Fig. 3 (c3)) is further broadened, and 

an additional peak appears in the optical spectrum. 

Correspondingly, a peak around 12.2 GHz is observed in 

the power spectrum (Fig. 3 (b3)), which corresponds the 

frequency interval between the two peaks existing in the 

optical spectrum. Under this case, the bandwidth of 

chaotic output is expanded to about 12.3 GHz. For k = 100 

ns-1, the optical spectrum (Fig. 3 (c4)) is significantly 

broadened, and the frequency interval between the two 

peaks in optical spectrum is 20.5 GHz. Meantime, as 

shown in Fig. 3 (b4), the powers of high-frequency 

components increase, and the bandwidth of chaotic output 

reaches 20.9 GHz. For k = 180 ns-1(fifth row), as shown in 

Fig. 3 (c5), the 13-th mode is enhanced and the SMSR 

decreases, the time series and the power spectrum show 

the dynamic state is a quasi-period state, and the 

bandwidth is about 1.3 GHz.  

 

 
 

Fig. 3. Time series (Column a), power spectra (Column b) and optical spectra (Column c) of the output from WRC-FPLD under 

the feedback coefficient k = 0 (Row 1), 6 ns-1 (Row 2), 40 ns-1 (Row 3), 100 ns-1 (Row 4), and 180 ns-1 (Row 5), respectively, 

where kB = 100 m-1 (corresponding reflected bandwidth of FBG is 6.6 GHz), Δf = 0 and the Bragg wavelength of FBG is same 

as the wavelength of “12-th mode” of free running WRC-FPLD (color online) 

 

To further illuminate the influence of the feedback 

coefficient k on the bandwidth of the chaos output from 

the WRC-FPLD subject to FBG filtered feedback, Fig. 4 

gives the evolution of the chaotic bandwidth with k under 

different mode selected to be the lasing mode. From this 

diagram, it can be seen that the evolution trends are similar 

for three cases. Once k is more than 6 ns-1, the WRC-

FPLD can be driven into chaotic state under filter 

feedback, and the bandwidths gradually increase with the 

increase of k. However, for k > 170 ns-1, the bandwidth 

decreases suddenly. Through observing corresponding 

power spectra and optical spectra, we find that, under k > 

170 ns-1, the state of the WRC-FPLD is not a chaotic state 

due to too strong optical feedback. It should be pointed out 

that the sudden decrease of the bandwidth has not been 

observed in the experimental investigation [28], which 
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may be due to that the feedback strength is not enough 

strong in the experiment. 

 

 
 

Fig. 4. Bandwidths of the chaotic outputs as a function of 

feedback coefficient k under three different longitudinal 

modes selected to be the lasing modes, respectively, 

where kB = 100 m-1 and the corresponding reflected 

bandwidth of FBG is 6.6 GHz, Δf = 0 (color online) 

 

 
 
Fig. 5. Bandwidth of the “12-th mode” chaotic signal as 

a function of the frequency detuning Δf under k = 100 ns-

1, where kB = 100 m-1 (circles) and 600 m-1 (squares) 

(corresponding reflected bandwidth of FBG is 6.6 GHz 

and 40 GHz, respectively) (color online) 

 

The above results demonstrate that the chaotic 

bandwidth is seriously affected by the feedback coefficient 

k. Finally, we will analyze the influences of the frequency 

detuning Δf and the reflected bandwidth of FBG on the 

chaotic bandwidth. The bandwidth evolutions with Δf 

under different reflected bandwidth of FBG are presented 

in Figure 5, where k = 100 ns-1 and the 12-th mode is 

chosen as an example. The value of kB takes 100 m-1 

(circles) and 600 m-1 (squares), and corresponding 

reflected bandwidth of FBG is 6.6 GHz and 40 GHz, 

respectively. From this diagram, on one hand, a positive 

frequency detuning is more helpful for generating a 

chaotic signal with a larger bandwidth, which is accord 

with the result in Ref. [33]. On the other hand, different 

evolutionary trends of the chaotic bandwidth can be 

observed for different kB. For kB = 100 m-1, the chaotic 

bandwidth arrives at its maximum when Δf = 0. With the 

increase of |Δf|, the chaotic bandwidth gradually decreases. 

Such an evolutionary trends may be due to a joint action of 

the oscillated wavelength red-shift resulted by optical 

feedback and the wavelength-selective optical feedback 

provided by FBG, and the influence of the FBG reflected 

sideband is not obvious since the peak of reflected 

sideband is below 0.2. However, for kB = 600 m-1, the peak 

of FBG reflected sideband is increased to 0.8. After 

overlaying the effect resulted by the strong reflected 

sideband, the evolutionary trend of the chaotic bandwidth 

with Δf behaves more complicated. For Δf = 12 GHz, the 

chaotic bandwidth arrives at its maximum (about 26.8 

GHz). However, once |Δf| exceeds 12 GHz, the adjacent 

longitudinal mode will be stimulated, and then single 

longitudinal mode operation cannot be achieved for the 

WRC-FPLD.  

 

 

4. Conclusions 
 

In summary, for our previously reported experimental 

results on the chaotic output characteristics of a weak 

resonant-cavity Fabry-Perot laser diode (WRC-FPLD) 

subject to fiber Bragg grating (FBG) filtered feedback [28], 

we present a numerical investigation by using a modified 

multi-mode rate equation model in this work. The results 

show that, by adjusting the Bragg frequency of FBG and 

choosing an appropriate feedback coefficient k, different 

longitudinal mode can be chosen to become a lasing mode 

operating at a chaotic state, and the bandwidth of the 

chaotic output is firstly increased and then decreased with 

the increase of k. Such a variation trend is consistent with 

our experimentally reported in [28]. Moreover, the effects 

of the FBG reflected bandwidth and the frequency 

detuning Δf between the central wavelength of FBG and 

the lasing longitudinal mode on the chaotic bandwidth 

have been analyzed. By selecting suitable feedback 

parameters, wavelength-tunable and bandwidth-

controllable chaotic signals can be obtained based on a 

WRC-FPLD subject to FBG feedback.  
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