Optical quadruple Peres gate using SLM and Savart plate

A. BHATTACHARYA ${ }^{\text {a* }}$, G. K. MAITY ${ }^{\mathrm{b}}$, A. K. GHOSH ${ }^{\mathrm{a}}$
${ }^{a}$ Department of Applied Electronics and Instrumentation Engineering, Netaji Subhash Engineering College, Techno City, Garia, Kolkata-700152, India
${ }^{b}$ Department of Electronics and Communication Engineering, Netaji Subhash Engineering College, Techno City, Garia, Kolkata-700152, India

Abstract

In recent years, energy dissipation is a major issue and this occurs due to information loss. Lossless data processing can be achieved using reversible circuits. Any reversible computation in a system can be performed if the system consists of only reversible logic gates. Reversible logic is very useful to many future computing technologies for faster operation. Optical logic gates are very important for handling large volume of data at high speed in multi valued logic (MVL) with high efficiency. In MVL system, trinary and quadruple valued logic are the most important. In this paper, optical quadruple Peres Gate using spatial light modulator (SLM) and Savart Plate has been proposed and described.

(Received January 24, 2017; accepted February 12, 2018)
Keywords: Di-bit, Peres Gate, Quadruple, Savart Plate, SLM

1. Introduction

In recent years, the advantages of integrated circuit technology made it feasible to implement electronic circuits operating with more than two discrete levels of signal. This gives the concept of multi valued logic (MVL). E.V. Dubrova [1] and others have proposed and developed multi valued logic (MVL) circuit design, revealing both the opportunities they offer and the challenges they face [2-4]. Different arithmetic operations like addition, multiplications in Galois field and also addition, subtraction and multiplication in modulo-4 arithmetic are demonstrated in MVL system by Vasundara Patel and K. S. Gurumurthy [5]. Quaternary to binary and binary to quaternary converters are also designed for this purpose [6].

The advantages of technology during the last two decades have generated a large demand for handling large volume of data at high speed. To meet up the requirements, the concept of multi valued logic (MVL) came forward from the status of the two-valued or binary logic system in the one hand and on the other, these include the idea of optical processor for switches. Parallel operation can be performed using optical processors but it was also felt that it can be possible to represent multivalued logic using the polarization states of light beam along with the presence or absence of light in optical system [7]. Avizienis introduced a signed digit number system for proper utilization of parallelism of optical beam instead of cascaded single- bit operating units [8]. The modified signed digit [9-13] or modified trinary number system [14] suggested the carry free operation. The ternary logic system based on three states was introduced by Lukasiewicz [14] and further it was modified by him to four states logic for better proposition.

Irreversible operation produces information loss which results in energy dissipation. The energy dissipated for every irreversible bit operation is at least $\mathrm{KT} \ln 2$ joules according to Landauer's research, where T is the operating temperature and $\mathrm{K}=1.3806505 * 10-23 \mathrm{~m} 2 \mathrm{kgs}-2 \mathrm{~K}-1$ (joule/kelvin) is the Boltzmann's constant [15]. The above mentioned energy can be saved if the operation is a reversible operation as described by Bennett in 1973[16]. Reversible operation means inputs can also be derived form output.

Differnt applications for lossless data processing can be performed using reversible operation [17-20]. Design of reversible logic optically is very important for faster operation. With this aim, a optical quadruple Peres Gate using SLM and Savart Plate is presented in this paper. The simulation results verify the he superiority of the proposed scheme.

The proposed paper is organized as follows: Section 2 deals with the description of quadruple valued logic systems. Section 3 describes briefly the truth tables based on di-bit representation. Section 4 presents The operation of the basic building block using SLM and Savart Plate is presented in Section 4. The operating principle and design of Quadruple Peres Gate is represented in Section 5. The logical simulation results and final conclusion with scope of future works are made in Section 6 and Section 7 respectively.

2. Quadruple Valued Logic System

The four states of the quadruple valued logic system are represented as the true, partly true, partly false and the false [21-23]. As the quadruple valued system with states $\{0,1,2,3\}$ does not satisfy the basic field conditions so, dibit representation of the form $00 \rightarrow 0,01 \rightarrow 1,10 \rightarrow 2$ and $11 \rightarrow 3$ is considered which is similar to basic two
valued logic system. As four is not a prime number, this should be included in Galois Field GF $\left(\mathrm{k}^{\mathrm{r}}\right)$ for cosideration as a field, where r is a positive integer and k is a prime number . For quaternary logic, Galois field may be represented as $\operatorname{GF}\left(2^{2}\right)$ i.e $\mathrm{k}=2$ and $\mathrm{r}=2$. The elements and the states $\{0,1,2,3\}$ of $\operatorname{GF}\left(2^{2}\right)$ are represented by dibit as $\{00,01,10,11\}$ respectively [24]. Table 1 represents the logical states, their representations and corresponding dibit representations and the state of polarization.

Table 1. Quadruple-Valued Logic System

Logical state Represented by	Dibit representation State of polarization		
False/ Wrong information	0	00	No light
Partial Information	1	01	Vertical polarization
Partial Information (complement of 1)	2	10	Honizontal polarization
True/ Complete Information	3	11	Presence of both the honzontal \& vertical polarization

3.Truth tables based on di-bit representation

The different quadruple logic gates e.g., OR, AND, NOT, XOR, NAND, NOR and XNOR are represented bitwise in this section as shown in Table 2.

Table 2. Truth tables for (a) OR, (b) AND, (c) NOT (d) XOR, (e) NAND, (f) NOR and (g) XNOR Gates.

(c)

B	00	01	10	11
00	11	10	01	00
01	10	11	00	01
10	01	00	11	10
11	00	01	10	11
	(g)			

4.The basic building block

Different logical operations in quadruple valued logic system are implemented using basic building block. The basic building block is shown in Fig. 1. Light output from laser source L after getting polarized at an angle 45° with respect to the two crystal axes is incident on the Savart Plate S_{1} as shown in Figure 1. The savart plate S_{1} is used to split the light into two orthogonal components. The light comes out of S_{1} with a spatial shift between them. The output of S_{1} are controlled by electrically addressable
negative SLMs - P_{1} and P_{2}. The SLMs are controlled by electrical signal applied on it. The negative SLM becomes opaque when an electric voltage is applied on it and it becomes tranpaprent when no electric voltage is applied on it. The operation of positive SLM is just opposite of negative SLM. The outputs from SLM are finally combined by the Savart Plate S_{2}. The flow chart of basic building block is also provided in Fig. 2 to understand the operation easily.

Fig. 1. The Basic Building Block

Fig. 2. The flow chart of Basic Building Block

5. Quadruple Peres Gate: Principle and Design

Peres Gate is a (3:3) conservative reversible logic gate. It has three inputs ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) and three outputs ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) that satisfy the Boolean relations as follows:

$$
\left.\begin{array}{l}
\mathrm{X}=\mathrm{A} \tag{1}\\
\mathrm{Y}=\mathrm{A} \oplus \mathrm{~B} \\
\mathrm{Z}=\mathrm{A} \cdot \mathrm{~B} \oplus \mathrm{C}
\end{array}\right\}
$$

The binary truth table of Peres Gate is given in Table 3.
Table 3. Binary Truth table of Peres Gate

Inputs			Outputs		
A	B	C	X	Y	Z
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	1
1	0	0	1	1	0
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	0	0

The truth table of quadruple Peres Gate with dibit representation is given in Table 4. In addition, the SLM and Savart Plate based circuit for optical Peres Gate is given in Fig. 3.

Table 4. Truth table of Quadruple Peres Gate

A	A_{1}	A_{2}	B	B_{1}	B_{2}	C	C_{1}	C_{2}	X	X_{1}	X_{2}	Y	Y_{1}	Y2	Z	Z_{1}	Z_{2}
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	1	0	1
0	0	0	0	0	0	2	1	0	0	0	0	0	0	0	2	1	0
0	0	0	0	0	0	3	1	1	0	0	0	0	0	0	3	1	1
0	0	0	1	0	1	0	0	0	0	0	0	1	0	1	0	0	0
0	0	0	1	0	1	1	0	1	0	0	0	1	0	1	1	0	1
0	0	0	1	0	1	2	1	0	0	0	0	1	0	1	2	1	0
0	0	0	1	0	1	3	1	1	0	0	0	1	0	1	3	1	1
0	0	0	2	1	0	0	0	0	0	0	0	2	1	0	0	0	0
0	0	0	2	1	0	1	0	1	0	0	0	2	1	0	1	0	1
0	0	0	2	1	0	2	1	0	0	0	0	2	1	0	2	1	0
0	0	0	2	1	0	3	1	1	0	0	0	2	1	0	3	1	1
0	0	0	3	1	1	0	0	0	0	0	0	3	1	1	0	0	0
0	0	0	3	1	1	1	0	1	0	0	0	3	1	1	1	0	1
0	0	0	3	1	1	2	1	0	0	0	0	3	1	1	2	1	0
0	0	0	3	1	1	3	1	1	0	0	0	3	1	1	3	1	1
1	0	1	0	0	0	0	0	0	1	0	1	1	0	1	0	0	0
1	0	1	0	0	0	1	0	1	1	0	1	1	0	1	1	0	1
1	0	1	0	0	0	2	1	0	1	0	1	1	0	1	2	1	0
1	0	1	0	0	0	3	1	1	1	0	1	1	0	1	3	1	1
1	0	1	1	0	1	0	0	0	1	0	1	0	0	0	1	0	1
1	0	1	1	0	1	1	0	1	1	0	1	0	0	0	0	0	0
1	0	1	1	0	1	2	1	0	1	0	1	0	0	0	3	1	1
1	0	1	1	0	1	3	1	1	1	0	1	0	0	0	2	1	0
1	0	1	2	1	0	0	0	0	1	0	1	3	1	1	0	0	0
1	0	1	2	1	0	1	0	1	1	0	1	3	1	1	1	0	1
1	0	1	2	1	0	2	1	0	1	0	1	3	1	1	2	1	0
1	0	1	2	1	0	3	1	1	1	0	1	3	1	1	3	1	1
1	0	1	3	1	1	0	0	0	1	0	1	2	1	0	1	0	1
1	0	1	3	1	1	1	0	1	1	0	1	2	1	0	0	0	0
1	0	1	3	1	1	2	1	0	1	0	1	2	1	0	3	1	1
1	0	1	3	1	1	3	1	1	1	0	1	2	1	0	2	1	0
2	1	0	0	0	0	0	0	0	2	1	0	2	1	0	0	0	0
2	1	0	0	0	0	1	0	1	2	1	0	2	1	0	1	0	1
2	1	0	0	0	0	2	1	0	2	1	0	2	1	0	2	1	0
2	1	0	0	0	0	3	1	1	2	1	0	2	1	0	3	1	1
2	1	0	1	0	1	0	0	0	2	1	0	3	1	1	0	0	0
2	1	0	1	0	1	1	0	1	2	1	0	3	1	1	1	0	1
2	1	0	1	0	1	2	1	0	2	1	0	3	1	1	2	1	0
2	1	0	1	0	1	3	1	1	2	1	0	3	1	1	3	1	1
2	1	0	2	1	0	0	0	0	2	1	0	0	0	0	2	1	0
2	1	0	2	1	0	1	0	1	2	1	0	0	0	0	3	1	1
2	1	0	2	1	0	2	1	0	2	1	0	0	0	0	0	0	0
2	1	0	2	1	0	3	1	1	2	1	0	0	0	0	1	0	1
2	1	0	3	1	1	0	0	0	2	1	0	1	0	1	2	1	0
2	1	0	3	1	1	1	0	1	2	1	0	1	0	1	2	1	0
2	1	0	3	1	1	2	1	0	2	1	0	1	0	1	0	0	0
2	1	0	3	1	1	3	1	1	2	1	0	1	0	1	1	0	1
3	1	1	0	0	0	0	0	0	3	1	1	3	1	1	0	0	0
3	1	1	0	0	0	1	0	1	3	1	1	3	1	1	1	0	1
3	1	1	0	0	0	2	1	0	3	1	1	3	1	1	2	1	0
3	1	1	0	0	0	3	1	1	3	1	1	3	1	1	3	1	1
3	1	1	1	0	1	0	0	0	3	1	1	2	1	0	1	0	1
3	1	1	1	0	1	1	0	1	3	1	1	2	1	0	1	0	1
3	1	1	1	0	1	2	1	0	3	1	1	2	1	0	3	1	1
3	1	1	1	0	1	3	1	1	3	1	1	2	1	0	2	1	0
3	1	1	2	1	0	0	0	0	3	1	1	1	0	1	3	1	1
3	1	1	2	1	0	1	0	1	3	1	1	1	0	1	2	1	0
3	1	1	2	1	0	2	1	0	3	1	1	1	0	1	0	0	0
3	1	1	2	1	0	3	1	1	3	1	1	1	0	1	1	0	1
3	1	1	3	1	1	0	0	0	3	1	1	0	0	0	3	1	1
3	1	1	3	1	1	1	0	1	3	1	1	0	0	0	2	1	0
3	1	1	3	1	1	2	1	0	3	1	1	0	0	0	1	0	1
3	1	1	3	1	1	3	1	1	3	1	1	0	0	0	0	0	0

Fig. 3. SLM and Savart Plate based Peres Gate

The above figure consists of three sections. The $1^{\text {st }}$ section performs the XOR operation, $2^{\text {nd }}$ one for AND operation and the last one for again XOR operation. The light output from the Laser source L after getting polarized is incident on the beam splitter BS_{1}. The beam splitter splits the light into two directions as shown Fig. 3. One part is incident on the Savart Plate S_{1} and the other part on the beam splitter BS_{2}. The output of savart plate S_{1}
consists of two orthogonal components of light. The components are horizontal polarization of light and the vertical polarization of light. The input $A\left(A_{1}, \mathrm{~A}_{2}\right)$ controls the positive SLMs P_{1} and P_{2}. The outputs of P_{1} and P_{2} are recombined by the Savart Plate S_{2}. The combined output from S_{2} is incident on the beam splitter BS_{3}. The one part of the output of BS_{2} is incident on S_{8}. The output from S_{8} are controlled by positive $S L M s P_{7}$ and P_{8} and finally they
recombined by S_{9}. The other part of the output of BS_{2} after being reflected by the mirror M_{6} is incident on BS_{5}. It splits the light into two components. One of which is incident on Savart Plate S_{11} and the output of S_{11} are controlled by positive SLMs P_{9} and P_{10} depending on the input which is the output of S_{10}. The opto-electrical converters (O / E) are used in the path of the rays for conversion of light signal into electrical signal. The one output of BS_{3} is fed to BS_{4} which splits the light again in two directions. One is refelected by mirror M_{8} and produce the output $\mathrm{X}=\mathrm{A}$. Another one is incident on Savart Plate S 3 and it is also spacilly modulated by the positive SLMs P_{3} and P_{4} depending on the control input B_{1}, B_{2} and finally they recombined by S_{4}. By the same procedure finaly the output of S_{14} and S_{7} combined by BS_{10} and produce the other output $\mathrm{Y}=\mathrm{A}$ XOR B. The other part of the output of BS_{5} ray reflected by the mirror M_{8} is incident on beam spliter BS_{6}. The one output of BS_{6} is also spatially modulated by the positive SLMs $\mathrm{P}_{25}, \mathrm{P}_{27}, \mathrm{P}_{26}$ and P_{28} depending on the inputs $\mathrm{A}\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ and $\mathrm{B}\left(\mathrm{B}_{1}, \mathrm{~B}_{2}\right)$. The output of S_{18} provides A AND B , which acts as the control input for SLM P_{13} and P_{14}. The 3rd section is the same as first section of the circuit diagram. As the inputs for 3 rd section are $A B\left(A_{1} B_{1}, A_{2} B_{2}\right)$ and $C\left(C_{1}, C_{2}\right)$ so the final output can be written as $Z=A B$ XOR C. From truth table 4 it can be seen that total 64 cases are considered. Some cases are discussed as follows:
(1)When $\mathrm{A}=0\left(\mathrm{~A}_{1}=0, \mathrm{~A}_{2}=0\right), \mathrm{B}=0\left(\mathrm{~B}_{1}=0, \mathrm{~B}_{2}=0\right)$ and $\mathrm{C}=0$ $\left(C_{1}=0, C_{2}=0\right)$ then no light at the output of S_{2}, hence $X=0$ ($\mathrm{X}_{1}=0, \mathrm{X}_{2}=0$). No light is present at the output of S_{7} and S_{14}, so the output, $\mathrm{Y}=0\left(\mathrm{Y}_{1}=0, \mathrm{Y}_{2}=0\right)$. As the input $\mathrm{C}=0$ so no light is present at the output of S_{26} and S_{33}, leading to Z $=0\left(\mathrm{Z}_{1}=0, \mathrm{Z}_{2}=0\right)$
(2)When $\mathrm{A}=0\left(\mathrm{~A}_{1}=0, \mathrm{~A}_{2}=0\right), \mathrm{B}=1 \quad\left(\mathrm{~B}_{1}=0, \mathrm{~B}_{2}=1\right)$ and $\mathrm{C}=0$ $\left(C_{1}=0, C_{2}=0\right)$ then no light at the output of $S 2$, hence $X=0$ ($\mathrm{X}_{1}=0, \mathrm{X}_{2}=0$). There will be no light at the output of S 7 . As the P9 and P10 are the negative SLMs, so both polarized light will be present at the output of S_{12}.As $\mathrm{P}_{11}=0$ and $\mathrm{P}_{12}=1$, the output of S_{14} will give vertical polarization. There is no light at the output of S_{7}. The output is $\mathrm{Y}=1$ $\left(\mathrm{Y}_{1}=0, \mathrm{Y}_{2}=1\right)$. As $\mathrm{AB}=0\left(\mathrm{~A}_{1} \mathrm{~B}_{1}=0, \mathrm{~A}_{2} \mathrm{~B}_{2}=0\right)$ and $\mathrm{C}=0$ so there will be no light at the output of S_{26} and S_{33} i.e. $\mathrm{Z}=0$ ($\mathrm{Z}_{1}=0, \mathrm{Z}_{2}=0$).
(3) When $\mathrm{A}=0\left(\mathrm{~A}_{1}=0, \mathrm{~A}_{2}=0\right), \mathrm{B}=2\left(\mathrm{~B}_{1}=1, \mathrm{~B}_{2}=0\right)$ and $\mathrm{C}=0$ $\left(C_{1}=0, C_{2}=0\right)$ then no light at the output of S_{2}, hence $X=0$ ($\mathrm{X}_{1}=0, \mathrm{X}_{2}=0$).As the bit representation of B is reverse with respect to the previous case so $\mathrm{P}_{11}=1$ and $\mathrm{P}_{12}=0$. The output of S_{14} consists of horizontal polarization. There is no light at the output of S_{7}. The output is $\mathrm{Y}=2$ $\left(\mathrm{Y}_{1}=1, \mathrm{Y}_{2}=0\right)$. As $\mathrm{AB}=0\left(\mathrm{~A}_{1} \mathrm{~B}_{1}=0, \mathrm{~A}_{2} \mathrm{~B}_{2}=0\right)$ and $\mathrm{C}=0$ so there will be no light at the output of S_{26} and S_{33} i.e. $Z=0$ $\left(Z_{1}=0, Z_{2}=0\right)$
(4) As $\mathrm{A}=0 \quad\left(\mathrm{~A}_{1}=0, \mathrm{~A}_{2}=0\right), \mathrm{B}=3 \quad\left(\mathrm{~B}_{1}=1, \mathrm{~B}_{2}=1\right)$ and $\mathrm{C}=0$ $\left(C_{1}=0, C_{2}=0\right)$ so light at the output of S_{2}, hence $X=0$ ($\mathrm{X}_{1}=0, \mathrm{X}_{2}=0$). The output of S_{14} consists of vertical and horizontal plarized light. There is no light at the output of S_{7}. The final output is $\mathrm{Y}=3\left(\mathrm{Y}_{1}=1, \mathrm{Y}_{2}=1\right)$.As $\mathrm{AB}=0$
$\left(\mathrm{A}_{1} \mathrm{~B}_{1}=0, \mathrm{~A}_{2} \mathrm{~B}_{2}=0\right)$ and $\mathrm{C}=0$ so there will be no light at the output of S_{26} and S_{33} i.e. $Z=0\left(Z_{1}=0, Z_{2}=0\right)$
(5) When $\mathrm{A}=1\left(\mathrm{~A}_{1}=0, \mathrm{~A}_{2}=1\right), \mathrm{B}=0\left(\mathrm{~B}_{1}=0, \mathrm{~B}_{2}=0\right)$ and $\mathrm{C}=1$ $\left(C_{1}=0, C_{2}=1\right)$, the output of S_{2} is at logic 1 state, hence $X=1 \quad\left(X_{1}=0, X_{2}=1\right)$. The out put of S_{7} consists of only vertically polarized light and no light at the output of S_{14}. The output is $\mathrm{Y}=1\left(\mathrm{Y}_{1}=1, \mathrm{Y}_{2}=0\right)$. There is no light at the output of S_{26} and the output of S_{33} consists of vertically polarized light i.e. $Z=1\left(Z_{1}=0, Z_{2}=1\right)$.
(6) When $\mathrm{A}=1 \quad\left(\mathrm{~A}_{1}=0, \mathrm{~A}_{2}=1\right), \mathrm{B}=1 \quad\left(\mathrm{~B}_{1}=0, \mathrm{~B}_{2}=1\right)$ and $\mathrm{C}=1$ $\left(C_{1}=0, C_{2}=1\right)$ so the output of S_{2} is at logic 1 state, hence $\mathrm{X}=1\left(\mathrm{X}_{1}=0, \mathrm{X}_{2}=1\right)$.There is no light at the output of S_{7} and S_{14}. The output is $\mathrm{Y}=0 \quad\left(\mathrm{Y}_{1}=0, \mathrm{Y}_{2}=0\right)$.As $\mathrm{AB}=1$ ($\mathrm{A}_{1} \mathrm{~B}_{1}=0, \mathrm{~A}_{2} \mathrm{~B}_{2}=1$) and $\mathrm{C}=1$ so there will be no light at the output of S_{26} and S_{33} i.e. $Z=0\left(Z_{1}=0, Z_{2}=0\right)$.
(7) When $\mathrm{A}=1\left(\mathrm{~A}_{1}=0, \mathrm{~A}_{2}=1\right), \mathrm{B}=2\left(\mathrm{~B}_{1}=1, \mathrm{~B}_{2}=0\right)$ and $\mathrm{C}=1$ ($C_{1}=0, C_{2}=1$)so the output of S_{2} is at logic 1 state, hence $X=1\left(X_{1}=0, X_{2}=1\right)$. The out put of S_{7} consists of vertically polarized light and the output of S_{14} consists of horizontally polarized light. The output consists of both polarazied light i.e. $\mathrm{Y}=3 \quad\left(\mathrm{Y}_{1}=1, \mathrm{Y}_{2}=1\right)$.As $\mathrm{AB}=1$ $\left(A_{1} B_{1}=0, A_{2} B_{2}=1\right)$ and $C=1$ so there is no light at the output of S_{26} and the output of S_{33} consists of vertically polarized light i.e. $Z=1\left(Z_{1}=0, Z_{2}=1\right)$.
(8) When $\mathrm{A}=1 \quad\left(\mathrm{~A}_{1}=0, \mathrm{~A}_{2}=1\right), \mathrm{B}=3 \quad\left(\mathrm{~B}_{1}=1, \mathrm{~B}_{2}=1\right)$ and $\mathrm{C}=1$ $\left(C_{1}=0, C_{2}=1\right)$ so the output of S_{2} is at logic 1 state, hence $X=1\left(X_{1}=0, X_{2}=1\right)$. There is no light at the output of S_{7} and the output of S_{14} consists of horizontally polarized light. The output consists of only horizontally polarized light i.e. $\mathrm{Y}=2\left(\mathrm{Y}_{1}=1, \mathrm{Y}_{2}=0\right)$. $\mathrm{As} \mathrm{AB}=1\left(\mathrm{~A}_{1} \mathrm{~B}_{1}=0, \mathrm{~A}_{2} \mathrm{~B}_{2}=1\right)$ and $\mathrm{C}=1$ so there will be no light at the output of S_{26} and S_{33} i.e. $Z=0\left(Z_{1}=0, Z_{2}=0\right)$.
(9) When $\mathrm{A}=2\left(\mathrm{~A}_{1}=1, \mathrm{~A}_{2}=0\right), \mathrm{B}=0\left(\mathrm{~B}_{1}=0, \mathrm{~B}_{2}=0\right)$ and $\mathrm{C}=2$ $\left(C_{1}=1, C_{2}=0\right)$ so the output of S_{2} is at logic 2 state, hence $\mathrm{X}=2\left(\mathrm{X}_{1}=1, \mathrm{X}_{2}=0\right)$. There is no light at the output of S_{14} and the output of S_{7} consists of horizontally polarized light. The output consists of only horizontally polarized light i.e. $Y=2\left(Y_{1}=1, Y_{2}=0\right)$. As $A B=0\left(A_{1} B_{1}=0, A_{2} B_{2}=0\right)$ and $\mathrm{C}=2$ so the output of S_{33} consists of horizonta polarization. There is no light at the output of S_{26}. The output is $\mathrm{Z}=2\left(\mathrm{Z}_{1}=1, \mathrm{Z}_{2}=0\right)$.
(10) When $\mathrm{A}=2\left(\mathrm{~A}_{1}=1, \mathrm{~A}_{2}=0\right), \mathrm{B}=1\left(\mathrm{~B}_{1}=0, \mathrm{~B}_{2}=1\right)$ and $\mathrm{C}=2$ $\left(C_{1}=1, C_{2}=0\right)$ so the output of S_{2} is at logic 2 state, hence $\mathrm{X}=2 \quad\left(\mathrm{X}_{1}=1, \mathrm{X}_{2}=0\right)$. The out put of S_{7} consists of horizontally polarized light and the output of S_{14} consists of vertically polarized light. The output consists of both polarazied light i.e. $\mathrm{Y}=3 \quad\left(\mathrm{Y}_{1}=1, \mathrm{Y}_{2}=1\right)$.As $\mathrm{AB}=0$ $\left(A_{1} B_{1}=0, A_{2} B_{2}=0\right)$ and $C=2$ so the output of S_{33} consists of horizonta polarization. There is no light at the output of S_{26}. The output is $\mathrm{Z}=2\left(\mathrm{Z}_{1}=1, \mathrm{Z}_{2}=0\right)$.
(11) When $\mathrm{A}=2\left(\mathrm{~A}_{1}=1, \mathrm{~A}_{2}=0\right), \mathrm{B}=2\left(\mathrm{~B}_{1}=1, \mathrm{~B}_{2}=0\right)$ and $\mathrm{C}=2$ $\left(C_{1}=1, C_{2}=0\right)$ so the output of S_{2} is at logic 2 state, hence $\mathrm{X}=2\left(\mathrm{X}_{1}=1, \mathrm{X}_{2}=0\right)$. There is no light at the output of S_{7} and S_{14}. The outputis $\mathrm{Y}=0 \quad\left(\mathrm{Y}_{1}=0, \mathrm{Y}_{2}=0\right)$. As $\mathrm{AB}=2$
$\left(\mathrm{A}_{1} \mathrm{~B}_{1}=1, \mathrm{~A}_{2} \mathrm{~B}_{2}=1\right)$ and $\mathrm{C}=2$ so There is no light at the output of S_{26} and S_{33}. The output is $\mathrm{Z}=0\left(\mathrm{Z}_{1}=0, \mathrm{Z}_{2}=0\right)$.
(12) When $\mathrm{A}=2\left(\mathrm{~A}_{1}=1, \mathrm{~A}_{2}=0\right), \mathrm{B}=3\left(\mathrm{~B}_{1}=0, \mathrm{~B}_{2}=1\right)$ and $\mathrm{C}=2$ $\left(C_{1}=1, C_{2}=0\right)$ so the output of S_{2} is at logic 2 state, hence $X=2\left(X_{1}=1, X_{2}=0\right)$. There is no light at the output of S_{7} and the output of S_{14} consists of vertically polarized light. The output consists of only vertically polarized light i.e. $\mathrm{Y}=1$ $\left(\mathrm{Y}_{1}=0, \mathrm{Y}_{2}=1\right)$. As $\mathrm{AB}=2\left(\mathrm{~A}_{1} \mathrm{~B}_{1}=1, \mathrm{~A}_{2} \mathrm{~B}_{2}=0\right)$ and $\mathrm{C}=2$ so There is no light at the output of S_{26} and S_{33}. The output is $\mathrm{Z}=0\left(\mathrm{Z}_{1}=0, \mathrm{Z}_{2}=0\right)$.
(13) When $\mathrm{A}=3\left(\mathrm{~A}_{1}=1, \mathrm{~A}_{2}=1\right), \mathrm{B}=0\left(\mathrm{~B}_{1}=0, \mathrm{~B}_{2}=0\right)$ and $\mathrm{C}=3$ $\left(C_{1}=1, C_{2}=1\right)$ so the output of S_{2} is at logic 3 state, hence $X=3\left(X_{1}=1, X_{2}=1\right)$. There is no light at the output of S_{14} and the output of S_{14} consists of both horizontally as well as vertically polarized light. The output consists of both polarazied light i.e. $\mathrm{Y}=3 \quad\left(\mathrm{Y}_{1}=1, \mathrm{Y}_{2}=1\right)$. As $\mathrm{AB}=0$ $\left(A_{1} B_{1}=0, A_{2} B_{2}=0\right)$ and $C=3$ the output of S_{33} consists of vertical and horizontal plarized light. There is no light at the output of S_{26}. The final output is $\mathrm{Z}=3\left(\mathrm{Z}_{1}=1, \mathrm{Z}_{2}=1\right)$.
(14) When $\mathrm{A}=3\left(\mathrm{~A}_{1}=1, \mathrm{~A}_{2}=1\right), \mathrm{B}=1\left(\mathrm{~B}_{1}=0, \mathrm{~B}_{2}=1\right)$ and $\mathrm{C}=3$ $\left(C_{1}=1, C_{2}=1\right)$ so the output of S_{2} is at logic 3 state, hence $X=3\left(X_{1}=1, X_{2}=1\right)$. There is no light at the output of S_{14} and the output of S_{7} consists of horizontally polarized light. The output consists of only horizontally polarized light i.e. $Y=2\left(Y_{1}=1, Y_{2}=0\right)$. As $A B=1\left(A_{1} B_{1}=0, A_{2} B_{2}=1\right)$ and $\mathrm{C}=3$ so there is no light at the output of S_{26} and the output of S_{33} consists of horizontally polarized light. The output consists of only horizontally polarized light i.e. $\mathrm{Z}=2\left(\mathrm{Z}_{1}=1, \mathrm{Z}_{2}=0\right)$
(15) When $\mathrm{A}=3\left(\mathrm{~A}_{1}=1, \mathrm{~A}_{2}=1\right), \mathrm{B}=2\left(\mathrm{~B}_{1}=1, \mathrm{~B}_{2}=0\right)$ and $\mathrm{C}=3$ $\left(C_{1}=1, C_{2}=1\right)$ so the output of S_{2} is at logic 3 state, hence $\mathrm{X}=3\left(\mathrm{X}_{1}=1, \mathrm{X}_{2}=1\right)$. There is no light at the output of S_{14} and the output of S_{7} consists of vertically polarized light. The output consists of only vertically polarized light i.e. $\mathrm{Y}=1\left(\mathrm{Y}_{1}=0, \mathrm{Y}_{2}=1\right)$. As $\mathrm{AB}=2\left(\mathrm{~A}_{1} \mathrm{~B}_{1}=1, \mathrm{~A}_{2} \mathrm{~B}_{2}=0\right)$ and $\mathrm{C}=3$ so there is no light at the output of S_{26} and the output of S_{33} consists of vertically polarized light. The output consists of only vertically polarized light i.e. $Z=1 \quad\left(Z_{1}=0\right.$, $Z_{2}=1$).
(16) When $\mathrm{A}=3\left(\mathrm{~A}_{1}=1, \mathrm{~A}_{2}=1\right), \mathrm{B}=3\left(\mathrm{~B}_{1}=1, \mathrm{~B}_{2}=1\right)$ and $\mathrm{C}=3$ $\left(C_{1}=1, C_{2}=1\right)$ so the output of S_{2} is at logic 3 state, hence $X=3\left(X_{1}=1, X_{2}=1\right)$. There is no light at the output of S_{14} and S_{7}. The output is given as $\mathrm{Y}=0\left(\mathrm{Y}_{1}=0, \mathrm{Y}_{2}=0\right)$. As AB $=3\left(\mathrm{~A}_{1} \mathrm{~B}_{1}=1, \mathrm{~A}_{2} \mathrm{~B}_{2}=1\right)$ and $\mathrm{C}=3$ so there is no light at the output of S_{26} and S_{33}. No light is present at the output of Z i.e. $Z=0\left(Z_{1}=0, Z_{2}=0\right)$.

Similarly the other cases can be described .

6. Performance evaluation through simulation

Simulation is done in Mathcad-7. Here we use 50:50 beam splitters. The vertical axis in Fig. 4 indicates power in dBm , while horizontal axis represents time scale in ps .

Fig. 4. Logical simulation result [x-axis: time (ps) and y-axis: power (dBm)].

The timing instant for the occurrence of bit pattern are at $0,5,10,15,20,25,30,35 \mathrm{ps}$. Upper three set waveforms indicate the input bit sequences, 00001111, 00110011, 01010101 for the input variables A, B, C, respectively. Similarly, the lower three waveforms indicate bit sequences 00001111,00111100 , 01010110 , bit pattern change of output variables $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, respectively.

A circuit is called reversible if input can also be determined from the output combinations. Let us test the reversible operation from the simulation results with chosen arbitrary time at 10 ps . The output signals at time instant 10 ps are $\mathrm{X}=0, \mathrm{Y}=1$ and $\mathrm{Z}=0$. Putting these values in Equation (1) we can write as follows:
$\mathrm{X}=\mathrm{A}$, indicates $\mathrm{A}=0$
$\mathrm{Y}=\mathrm{A} \oplus \mathrm{B}$, indicates $\mathrm{B}=1$ and
$Z=A \cdot B \oplus C$, indicates $C=0$.
The generated inputs $\mathrm{A}=0, \mathrm{~B}=1$ and $\mathrm{C}=0$ are satisfying the Table 3. Similarly, the different output bit patterns at different time instant give the different input bit combinations, which satisfy the reversibility condition.

7. Conclusions and scope of future works

This paper deals with the design of optical quadruple Peres Gate circuit based on SLM and Savart Plate. The developed theoretical models are very much useful for
optical reversible logic computing system. This gate can be used to perform different logical and arithmetic operations in reversible domain. The purpose of this study is to explore the quadruple logic system in four-state implementation which is possible to handle more information at a time. In future the peres gate can be used for realization of various boolean expressions in the form of system implementations and arithmetic operations.

References

[1] E. V. Dubrova, NORCHIP'99, 340 (1999).
[2] S. Liu, C. Li, J. Wu, Y. Liu, Optics Letters 14(14), 713 (1989).
[3] P. Ghosh, S. Mukhopadhyay, Chinese Optics Letters 3(8), 478 (2005).
[4] T. Chattopadhyay, G. K. Maity, J. N. Roy, Journal of Nonlinear Optical Physics and Materials, World Scientific 17(3), 315 (2008).
[5] K. S. V. Patel, K. S. Gurumurthy, International Journal of VLSI design \& communication system (VLSICS) 1(1), 13 (2010).
[6] T. Chattopadhyaya, J. N. Roy, Optics \& Laser Technology 41(3), 289 (2009).
[7] A. W. Lohmann, Appl. Opt. 25, 1594 (1986).
[8] A. Avizienis, IRE Transactions on Electronic Computers EC-10(3), 389 (1961).
[9] B. L. Drake, R. P. Bocker, M. E. Lasher, R. H. Patterson, W. J. Miceli, Opt. Eng. 25(1), 250138 (1986).
[10] R. P. Bocker, B. L. Drake, M. E. Lasher, T. B. Henderson, Appl.Opt. 25(15), 2456 (1986).
[11] A. K. Cherri, M. A. Karim, Appl. Opt. 27(18), 3824 (1988).
[12] A. K. Ghosh, P. Pal Choudhury, A. Basuray, Computing Sciences and Software (Springer), 87 (2008).
[13] A. K. Datta, A. Basuray, S. Mukhopadhyay, Optics Letters 14, 426 (1989).
[14] J. Łukasiewicz, O logice trojwartosciowej, Ruch Filozoficny 5, 169 (1920).
[15] R. Landaur, IBM Journal of Research and Development 5, 183 (1961).
[16] C. H. Bennett, IBM Journal of Research and Development 17(6), 525 (1973).
[17] G. K. Maity, J. N. Roy, S. P. Maity, International Conference on Advances in Computing and Communications, 22 (2011).
[18] G. K. Maity, S. P. Maity, T. Chattopadhyay, J. N. Roy, International Conference on Trends in Optics and Photonics, 138 (2009).
[19] G. K. Maity, S. P. Maity, J. N. Roy, International Conference on Advanced Computing \& Communication Technologies (ACCT), 249 (2012).
[20] S. Mandal, S. Samanta, G. K. Maity, S. Mukhopadhyay, International Journal of Computer Science and Information Security 14(12), 664 (2016).
[21] A. K. Ghosh, A. Bhattacharya, M. Raul, A. Basuray, Optics \& Laser Technology 44(5), 1583 (2012).
[22] A. K. Ghosh, A. Bhattacharya, A. Basuray, Journal of Computational Electronics 11(4), 405 (2012).
[23] A. Bhattacharya, A. K. Ghosh, International Journal of Modern Trends in Engineering and Research (IJMTER) 02(08), 31(2012).
[24] A. K.Ghosh, P. P. Choudhury, A. Basuray, Innovations and Advanced Techniques in Computer and Information Sciences and Engineering, 77 (2007).

[^0]
[^0]: *Torresponding author: animeshb_17@yahoo.com

