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1. Introduction

Optical soliton perturbation is a core area of
research in the field of nonlinear optics. There are
various aspects in this topic that are touched upon by
several scientists across the globe [1-12]. A few such
issues are soliton perturbation theory, quasi-stationary
solutions [3], quasi-patrticle theory, optical soliton
cooling. This paper is going to take up the study of
integrability of the model, namely the perturbed
nonlinear Schrédinger's equation (NLSE). There are a
variety of integration schemes that are applied to study
the model in order to extract soliton and shock wave
solutions. Some of these algorithms are traveling wave
hypothesis, method of undetermined coefficients, semi-
inverse variational principle, G'/G-expansion, Lie
symmetry [6], extended Kudryashov's method [11] and
countless others. This paper adopted the modified simple
equation approach to secure soliton solutions to the
perturbed NLSE. This will only reveal topological and
singular soliton solutions to the model. Bright soliton
solutions cannot be recovered with this integration tool.
Such is the limitation to this scheme. There are four
types of nonlinear media that are studied in this paper.
They are Kerr law, power law, parabolic law and dual-
power law.

2. The modified simple equation method

Suppose we have a nonlinear evolution equation in the
form
PQu, Uy, Uy Uy Uy, Upys ... ) = 0, @

where P is a polynomial in u(x,t) and its partial
derivatives in which the highest order derivatives and
nonlinear terms are involved. In the following, we give the
main steps of this method [11, 10, 2].

Step-1: We use the transformation

u(xt) =u(§), §=x—ct @

where C is a constant to be determined, to reduce Eg. (1) to
the following ODE :

Q(u,u,u",...) =0, 3)

where Q is a polynomial in u (&) and its total derivatives,
. I i
while ~ = T3

Step-2: We suppose that Eg. (3) has the formal solution.

, l
w® =2 (5), @
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where @; are constants to be determined, such that

ay # 0, and P(&) is an unknown function to be
determined later.

Step-3: We determine the positive integer N in Eq. (4)
by considering the homogeneous balance between the
highest order derivatives and the nonlinear terms in Eq.

©)2

Step-4: We substitute (4) into (3), then we calculate all
the necessary derivatives u’,u"’,... of the unknown
function u(&) and we account the function Y(§). As a
result of this substitution, we get a polynomial of
Y' (&) /P(&)and its derivatives. In this polynomial, we
gather all the terms of the same power of
w (&), j=0,1,2,... and its derivatives, and we
equate with zero all the coefficients of this polynomial.
This operation yields a system of equations which can be

solved to find a,and P (&). Consequently, we can get
the exact solutions of Eq. (1) .

3. Application to NLSE

The dimensionless form of the improved perturbed
NLSE is given by [1, 2]

id, +ad, +ba, +F (|a*)a =

ifag,+(a"a) +o(a") o} ®

In (5), the two independent variables are X and t
which represent the spatial and temporal variables
respectively. The dependent variable q(x,t) is the
soliton pulse profile. The first term is the linear
evolution term while the coefficients of a and b
accounts for the dispersion term where the coefficient of
a represents the improved term that introduces stability
to the NLSE which is otherwise an ill-posed problem.
The coefficient of b is the usual group velocity
dispersion. From the perturbation terms on the right
hand side, the coefficient of a is the inter-modal
dispersion, while A is the self-steepening perturbation
term and finally U is the nonlinear dispersion
coefficient. The parameter m is the full nonlinearity

factor that is studied on a generalized setting. These
perturbation terms are all of Hamiltonian type and hence
the perturbed NLSE given by (5) makes it integrable.

In Eq. (5), F is a real-valued algebraic function and
it is necessary to have the smoothness of the complex
function F(|q|?)q: C = C. Considering the complex
plane C as a two-dimensional linear space R,, the
function F(|ql®)q is k times continuously
differentiable, so that

F(ql»)q e U ,_, c*((=n,n) x (=m,m); R?). (6)

In order to solve Eq. (5), we use the following wave
transformation

q(x,t) = U(§e' ™D ™
where U(§) represents the shape of the pulse and

§ =k(x —vt), ®)

®d(x,t) = —kx + wt + 6. 9)

In Eq. (7), the function ®(x,t) is the phase
component of the soliton. Then, in Eq. (9), K is the soliton
frequency, while w is the wave number of the soliton and 6

is the phase constant. Finally in Eq. (8), v is the velocity of

the soliton. Substituting Eq. (7) into Eq. (5) and then
decomposing into real and imaginary parts yields a pair of
relations. The imaginary part gives

—2bK—
P = aw K a’ (10)

1—-ak

while the real part gives

k?(b—av)u” —(a)+aK—aa)K+bK2)U -
11
AU 4 cF (U)U =0, W

The relation Eq. (10) gives the velocity of the soliton in
terms of the wave number while Eq. (11) can be integrated
to compute the soliton profile provided the functional is
known.

3.1. Kerr law nonlinearity

The Kerr law nonlinearity is the case when F (S) = s.

For Kerr law nonlinear medium, m = 1 in order for Eq. (5)
to be integrable. Thus, (5) reduces to

. 2
iq, +aq, +ba,, +cla| q=

] (12)
i{a, +2(d* a) +o(d[") a.
and Eq. (11) simplifies to
k?(b—av)u” —(a)+0(K‘—aa)K‘+bK'2)U +
(13)

(c—Ax)U* =0.

Balancing U'’ with U3 in Eq. (13) gives N = 1.
Consequently we reach

Ul =a,+a, (TpT(;)))’al #= 0. (14)
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Substituting Eq. (14) in Eqg. (13) and then setting the
coefficients of l/)_j(f),j = 0,1,2,3, to zero, then we
obtain a set of algebraic equations involving a,, a,, k,
K, v and w as follows:

Y3 coeff.:
a, (') (2k*(b-av)+al(c—x4))=0, ()

Y2 coeff.:
3a,9' (k2" (av — b) + aga,P'(c — k) =0,  (16)

Y1 coeff:

(—3&5 (c—xd) —akw+ax +J
W
-8

bx? + w =0, (17
+k2y @ (av—b)
YO coeff:
2
(kA —cC)—akw+
—ao(a‘) 2 0.
ok +bx +w
Solving this system, we obtain
\/—&K(t) +ak+bk’ +w
a, =+ ,
cC—xA
(19)

_ | 2k*(b-av)
AT T eoa

l/)” _ \[_ 2(—akw+ak+bk’+w) l/)’, (20)

k% (b-av)

and

2(—alcw+ aK+b 1c2+w)
k?(b—av)

Y= Y. (21)

From Egs. (20) and (21), we can deduce that

, k?(b—av)
v = 2
2(—aKa) +ak+bx + a)) (22)

2(—ar«o+ak+bx2 +w)

N k2 (b-av)
ke

and

k*(b—av)
V== 2
2(—a1<a)+a1c+b1< +a))

)

2(—axw+m<+bx2+a))
kel Fom Ty
1 21
where k, and k., are constants of integration. Substituting
Eq. (22) and Eq. (23) into Eq. (14), we obtain following the
following exact solution to Eq. (12)

\/—a/(a)+alc+ bk’ +w N
c—xA
k?(b—av)
\/(C—Kl)(—axa)+a1<+bl(2+a)) 24)
q(X,t) =+ _2(—axm+ax+bx2+w)f
kle k2 (b-av)
) \/ 2(—aK/u+m(+bK2+a))
Co-a) T e
2(—6:11(60+0:K+b1(2 +a)) '
+k,
Xei(f/(x+wt+0).
If we set
K = 2(—akw + ax +bx’ + w)
' k?(b—av)
2(—am)+mc+b1c2 +a))§
T 2. N %0
e k? (b—av) , k2 — il,
we obtain:
(i) When
(—akw + ax + bxk? + w)(av—b) >0,
we have
_ 2
qx1) :i\/ akw+axk+bx®+w tanh
c—xl (25)
—akw+ak+bi? + i
k X —Vvt) + el( KX+at+0)
L/ 2k*(av-b) (k(x=v) 50)}
_ 2
qx 1) = i\/ ako+ax+bx” +w coth
c—xl (26)

{\/—axa)+ak+bkz +w

_ % i(—xx+at+0)
2k2(aV—b) (k(x Vt)+§0):| e ]
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where (25) and (26) representdark soliton and singular
soliton solutions.

(i) When
(—akw + ax + bk?> + w)(av—Db) < 0,

we have the following periodic singular solutions:

2
q(x,t):i\/— akw+akx +bx® +w tan
c—xA

_—afca)+afc+b/<2 +w
2k*(av—b)

i(—xx+ot+0)
)

(@7)

(k(x_Vt)"‘éo)}

xe

a(x t)__\/_—alcw+mc+b7c2+a)
) + c—

—akw+ak +bi’ + (28)
cot| |- k(x—vt
[\/ 2k* (av-b) (k( )+§°)}
i(—xx+at+6)

xe.( ,

where v is given by Egq. (10) and w is an arbitrary
constant.

3.2 Power law nonlinearity

The power law nonlinearity is the case when
F(s)=s". For Power law nonlinearity, M=n in
order for Eq. (5) to be integrable. Thus, (5) reduces to

. 2n
1], +adq, +qux +C|Q| gq=
[eq, + (29)
| n n 1
(") o) o
and Eq. (11) simplifies to

k*(b—av)u’ - a)+0a<—aa)z<+b/c2)U +

(30)

(c—Ax)U it =,

Set
1

Uu=vn (31)

so that (30) transforms to

2 " "2

k (b—av)(nvv +(1-n)(V') )— @

n’ (a)+ak—aa)K+bK2)V2 +nV*(c-x1) =0.

Balancing V'V with V* in Eq. (32) gives N =1.
Consequently we reach
V(§)=ao+a1(wj, 8, #0. @)
v (<)

Substituting Eg. (33) in Eg. (32) and then setting the
coefficients of (&), j=0,1,2,3,to zero, then we
obtain a set of algebraic equations involving
a,,8,,K,x,vand @ as follows:

w ™ coeff.:
a’ (v')' (K*(n+1)(o-av) +a/n’(c—x4)) =0, (34
1//‘3 coeff..

V/z[z%nw(w(b—av)+2afn<c—f</1>)—]:0, (35)
ak?(n+2)y"(b—av)

1//_2 coeff..

~3a,a,k*ny'y"(b—av) —a’n® (y')’
(—6a§ (c—xA) —axw+ ax +bx’ + a)) -

,[K2(n=1)(y")" (b-av)- o
aZk’ny ¥y’ (av-b) ’

(36)

l//_l coeff.:
a,2.(1) 2ny/'(—2a§ (c—xA) —akw+ akx +bx’ + a)) _o, @)
k2% (av—b)
WO coeff.:
a (—nz)(ag(ld—c) —akw+ ax +br? +a)) =0.(38)

Solving this system, we obtain

_(n+D)(b—av)

8, =0, a =+k " (c ) (39)
and
w =0, (40)
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n (—aKa)+ ak +bx? + a))

"= y 41
v K(b_av) 7 (41)

Egs. (40) and (41) give a trivial solution. This leads
to recapitulation of a well known fact. Power law
nonlinearity does not support topological solitons ot
singular solitons of this type unless the nonlinearity
collapses to Kerr type [4].

3.3 Parabolic law nonlinearity

The parabolic law nonlinearity is the case when
F(s)=ns+¢ s’ For Parabolic law nonlinearity,

M =1 in order for Eq. (5) to be integrable. Thus, (5)
reduces to

iqt +aly +qux +(C1|q|2 +C, |q|4)q =

(42)
. 2 2
I{aqx+iUQIq)x+u(MI)xq}
and Eqg. (11) simplifies to
k?*(b—av)u” —(a)+ aK—aa)K+bl<2)U @)
+(c,— AU +cU° =0,
where C, =C€7,C, =C{. Set
1
U=V? (44)
so that (43) transforms to
K*(b—av)(2Wv "~ (V"))
—4(—aKa) +ak+br?+ a))V 2 (45)

+4(c,—xkA)V?+4c,V* =0.

Balancing V'V with V *in Eq. (45) gives N =1.
Consequently we reach

V(&)= wj, 0.
©) ao+a1(w(§) a # )

Substituting Eq. (46) in Eq. (45) and then setting the
coefficients of l//_j (&), 1=0,1,2,3, to zero, then we
obtain a set of algebraic equations involving
a,,8,,K,x,vVand @ as follows:

w ™ coeff:
a’ (w')" (3k*(b—av)+4a’c, ) =0,

1//’3 coeff.:

sa(p ) [ai(kzl//n(av—b)+a11//’(c1 —Kl))] o,

+agy ' (K* (b—av) +4alc, )
1//_2 coeff.

—4a; (v

akom +ax +bx? +w

2( ,)2 (3610 (’d_cl)_6agcz _)

~6a,a,k%y'y"(b—av)a’ +k (y") (av—b)
+2a’k’y Py (b—av) =0,

l//_l coeff.:

6a, (k1 —c,)—8ajc, +k’y

. 4(—a1ca)+a1c+bi(z+a))+
-2a,3,| v ® (av—b) =0,

gyo coeff..
4aj(ay(c, —xA)+ajc, +
akw—ax —bxk* —w

Solving this system, we obtain

3(cl—r</1)’ at 3k2(av—b)’

4c, \]
16, (ax +bx?) +3(c, - kA)’
a 16c, (ax —1)

a,=—

and

3(c,—xA)
4c,k2(@v—b)

. 3(c,—kAY
v =—(C12 <4) V.
4c,k“(av—Db)

From Egs. (53) and (54), it is possible to deduce

. 3(g-xA)

. A kz(av—i:)) ke 4c2k2(av—b)§,
3(c,—x4)

(47)

49)

(49)

(50)

(51)

(52)

(3

4

(59)
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and
ackP(av—b) Homi
:Z—Zkle 4c, k® (av-h) +k2, (56)
3(c,—x 1)
where Kk and K, are constants of integration.

Substituting Eq. (55) and Eq. (56) into Eq. (46), we
obtain the following exact solution to Eq. (42)

1
2
N ECEY)
3(01 —Kﬂ,) kle 4c,k” (av-b)
g(x,t)=<- + >
4c, 4c,k*(av—b)
3(c, —K/l)z
N ECEY) c
4c,k? (av-h)
ke VT 4k,
{ [1602(a/<+b1<2)+3(clx/1)2} 9}
o 16¢, (ax—1) *
xe
(67)
If we set

3(C —Kﬂ,)z + 3(012_7’(/1)250
1 e \J4c2k (av-b) ’ C2 :il,

' 4c,k(av—b)

we obtain:
1
—1+tanh 2
)3 -)|| | 3(c,—m2)
Q) == | || (58)
8¢, 16¢,k?(av—b)

(k(x=vt)+&,)

) 16¢, (o x-+bx? ) +3(c -x2)°
i| —KX+ —1602 (ar1) t+6
xXe

N

—1+coth

3(c,—x A) 3(C 7’{/1)
8¢, 16¢,k*(av —b)

a8 = (k(x—vt)+§o)}

[ [16cy(axtbr?)+3(c-x2)°
|[—kx+[w t+0
xe

(59)

where V is given by Eq. (10) and
c,(av—b)>0.

Equations (58) and (59) represent dark and singular soliton
solutions respectively.

3.4 Dual-power law nonlinearity

The Dual-Power law nonlinearity is the case when
F(s)=7s"+¢s™. For Dual-Power law nonlinearity,

M=nN in order for Eq. (5) to be integrable. Thus, (5)
reduces to

i, + agy + D0, +(c, o +c[o[" )

(60)
=i {azqx +/1(|q|2” q)x +u(|q|2")x q},
and Eq. (11) simplifies to
k*(b—av)u” —(a)+a/<—aa)ic+b/<2)U 61)
+(Cl —ﬂK‘)U 2n+l + CZU 4n+l _ 0,
where C, =C77,C, =C{. Set
1
Uu=va (62
so that (61) transforms to
kz(b—av)(ZnVV”+(1—2n)(V’)2)
(63)

—4n? (—aKa)+ ak +bx® + a))V z

+4n? (¢, —kA)V° +4c,nV* =0.

Balancing V'V with V* in Eq. (13) gives N =1.
Consequently we reach
v (&)

V(§)=ao+a1(wj, a, #0. (64)

Substituting Eqg. (64) in Eg. (63) and then setting the
coefficients of w1(£), j=0,1,2,3, to zero, then we

obtain a set of algebraic equations involving
a,, &, K, x, V and @ as follows:
1/14 coeff.:
2 —_—
af(l//')4 k (22n+1)(b av) _o, (65)
+4a102n
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w > coeff.:

(66)

2an’y’ (¢, —xA)
2a,(y')"| "\ ~KA(n+Dy"(b-av)
+23,ny’ (k*(b—av) +4ac,n)

0,

1//_2 coeff..
—Ba,a,k’nyy"(b—av) —4a/n’ (')’
(3a0(z</1—c1)—6a§c2 —axo+ ax +bx’ +a))—
a?k*(2n-1)(y") (b-av)
+2a’k*ny Py '(b—av) =0,

(67)

1//’1 coeff..
. 2(—aKa)+ ak +bx? + a))
+3a, (k1 —c,)—4agc, =0,
+k2® (av—b)

(68)
—2a,3,n

l//0 coeff.:

2,2 _ 2
43’ (3 (¢, —x4) + 35, )
+akw—ak —bx? —w

Solving this system, we obtain

_(@n +1)(c, —&A)
- 2(n+1)c,

_|@n+D)k?(av-h)
4= i\/ 4n’c, ’

~ 4(n+1)°c, (mc+ bK2)+ (2n+1)(c, - ’d“)z
“= 4(n+1)’c, (ax -1) |

; (70)
an
2 2
ot (2n+1)n*(c,—-x 1) v -
(n+1)%c, k*(av-b)
. @n+Dn?(c,—x A1)
:( n+1)n*(c,—x 4) -

(n+1)2c,k2(@av—b) "

From Egs. (71) and (72), it is possible to deduce

- (n+1)?%c,k*(av-b)
N @n+)n® (¢, -k 2)’

N f(2n+1)n2(cl—x/1)zé
“\ (n+1)%c,k? (av-b)
ke 2

_(n +1)%c, k*(av-b)
(2n +1)n2(cl—zc/1)2

. ’(2n+l)n2(cl—zdu)25
- 20 12 (ay_|
kle (n+1)“c, k* (av-h) + k

and

21

(73)

(74)

where K, and K, are constants of integration. Substituting
Eq. (73) and Eg. (74) into Eq. (64), we obtain the following

exact solution to Eq. (60)

(2n+1)(xA-c,) N

2(n+1)c,
. (2n+1)n(c,-xA)
Q)= (n+1)°k*(av—h)? " ef\limuyczkz(awa
' an*(e -2y

(2n+1)n?(c,-x2)°
2 2 —
(n+)’ck’(av-b) waanZWav-mik
2

2 kle
(2n+1n*(c,-x4)

{A(nﬂ)z 0w+ Jo(2n41)(c, )]
=KX+
4(n+1)%c, (ax-1)

i t+6

xe

If we set

‘- (2n+1)n*(c,—xA)
L (n+1)%c,k*(av—b)

2, (2n+1)n?(c,—xA)*

T\ (n+1)2c k2 (av—b)%

c, =41,
we obtain:

(2n+1)(c, - x4)

4(n+1)c,
q(xt) =4[ -1
tanh
@+)(c-k)

Ko e

[ [4(n+1)zcz(ax+brcz)+(2n+1)(clKA)ZJ J

i —Kx+ t+0
4(n+1)’cy (ax-1)

Xe

(75)

—

(76)
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(2n+1)(c,-x4) n
4(n+1)c,

axy= -

[ @ -m)
\I4(n+1)zczk2(av—b)(k(x W)+

2 2 e 2
i[’(x{A(nA) Cz(al(+bl( )+(2n+1)(cl ) JH(J}
Xe

4(n+1)%c, (ax-1)

where V is given by Eq. (10) and
c,(av—b) >0.

Equations (76) and (77) represent dark and singular
soliton solutions respectively.

4. Conclusions

This paper obtains dark and singular soliton
solutions to the perturbed NLSE that was considered
with four forms of nonlinear media. The integration
alorithm applied is the modified simple equation
method. These soliton solutions appear with the
necessary integrability criteria that are often referred to
as constraint conditions. Apparently, the shrtcoming of
this scheme is that bright soliton solution cannot be
recovered using this interability criteria. Later, this
scheme will be applied to other situations such as
brefringent fibers, DWDM systems, optical couplers and
others. The results of those research will be soon visible.
Additionally, models with time-dependent coefficients
will also be considered.
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