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1. Introduction 

 

While optical solitons have made several advances 

in the field of nonlinear fiber optics, there is yet a lot to 

be explored [1-15]. Most of the results are visible for 

polarization preserving fibers. Therefore, it is important 

to focus attention to birefringent fibers and DWDM 

systems. This paper studies the latter for parallel 

propagation of solitons. There are several integration 

schemes proposed during the past few years to study the 

governing nonlinear Schrödinger's equation (NLSE) for 

optical fibers and DWDM systems. Two types of 

nonlinear media that are studied in this paper. They are 

Kerr (cubic) law and parabolic (cubic-quintic) law. This 

model was considered in the past using three integration 

schemes [4]. This paper focuses on modified simple 

equation method to retrieve soliton solutions to the 

model. After a quick revisitation to this algorithm, 

soliton extraction procedure procedure will be detailed 

for this model. 

 

2. The modified simple equation method 

 
Suppose we have a nonlinear evolution equation in 

the form  

 

𝑃(𝑢,𝑢𝑡 , 𝑢𝑥,𝑢𝑥𝑥 ,𝑢𝑡𝑡 ,𝑢𝑡𝑥 , . . . ) = 0,      (1) 

 

 where 𝑃 is a polynomial in 𝑢(𝑥,𝑡) and its partial 

derivatives in which the highest order derivatives and 

nonlinear terms are involved. In the following, we give 

the main steps of this method [1, 2, 3]. 

Step-1: We use the transformation  

 

𝑢(𝑥,𝑡) = 𝑢(𝜉),   𝜉 = 𝑥 − 𝑐𝑡, (2) 

 

where 𝑐 is a constant to be determined, to reduce Eq. (1) to 

the following ODE :  

 

𝑄(𝑢,𝑢′, 𝑢′′, . . . ) = 0,                                 (3) 

 

 where 𝑄 is a polynomial in 𝑢(𝜉) and its total derivatives, 

while  ′ =
𝑑

𝑑𝜉
. 

 

Step-2: Assume Eq. (3) has the formal solution.  

 

𝑢(𝜉) = ∑  𝑁
𝑙=0 𝑎𝑙 (

𝜓′(𝜉)

𝜓(𝜉)
)

𝑙

,                            (4) 

 

where 𝑎𝑙  are constants to be determined, such that 𝑎𝑁 ≠ 0, 

and 𝜓(𝜉) is an unknown function to be determined later. 

Step-3: We determine the positive integer 𝑁 in Eq. (4) by 

considering the homogeneous balance between the highest 

order derivatives and the nonlinear terms in Eq. (3). 

Step-4: We substitute (4) into (3), then we calculate all the 

necessary derivatives 𝑢′, 𝑢′′, . .. of the unknown function 

𝑢(𝜉) and we account the function 𝜓(𝜉). As a result of this 

substitution, we get a polynomial of 𝜓′(𝜉)/𝜓(𝜉)and its 

derivatives. In this polynomial, we gather all the terms of the 

same power of 𝜓−𝑗(𝜉), 𝑗 = 0,1,2, . .. and its  derivatives, 
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and we equate with zero all the coefficients of this 

polynomial. This operation yields a system of equations 

which can be solved to find 𝑎𝑘and 𝜓(𝜉). 

Consequently, we can get the exact solutions of Eq. (1) . 

 

 

3. Application to DWDM system  
 

The soliton solution retrieval procedure will now be 

split into the following two subsections based on the 

type of nonlinearity. 

 

3.1  Kerr law nonlinearity  

 

For Kerr law nonlinearity, DWDM model is:  

 
( ) ( ) ( )

2 2
( ) ( ) ( ) 0,

l l l

t l xx l xt

N
l n l

l ln

n l

iq a q b q

c q q q


  

 
  

 


            (5) 

 

 where, 1 ≤ 𝑙 ≤ 𝑁. The first term in (5) on left-hand  

side is the evolution term, while 𝑎𝑙  represents the 

coefficient of GVD; 𝑏𝑙  represents the STD. Then, 𝑐𝑙  is 

the coefficient of self-phase modulation (SPM) while 

𝛼𝑙𝑛 are the coefficients of cross-phase modulation 

(XPM). The independent variables are 𝑥 and 𝑡 that 

represents the spatial and temporal variables 

respectively. The dependent variable is 𝑞 (𝑙)(𝑥, 𝑡) that 

gives the soliton profile in every single channel. 

In order to solve Eq. (5), we use the following wave 

transformation  

 

 𝑞(𝑙)(𝑥,𝑡) = 𝑈(𝑙)(𝜉)𝑒𝑖Φ(𝑥,𝑡)
                  (6) 

 

where 𝑈(𝑙)(𝜉) represents the shape of the pulse in 

every channel and  

 

𝜉 = 𝑘(𝑥 − 𝑣𝑡),                                   (7) 

  

Φ(𝑥,𝑡) = −𝜅𝑙𝑥 + 𝜔𝑙𝑡 + 𝜃𝑙 .            (8) 

 

 In Eq. (6), the function Φ(𝑥, 𝑡) is the phase 

component of the soliton. Then, in Eq. (8), 𝜅𝑙 , 𝜔𝑙 ,𝜃  

and 𝑣 are the frequencies, wave numbers, phase 

constants and the velocity of the soliton in every single 

channel. Substituting Eq. (6) into Eq. (5) and then 

decomposing into real and imaginary parts yields a pair 

of relations. The imaginary part gives  

 

𝑣 =
𝑏𝑙𝜔𝑙−2𝑎𝑙𝜅𝑙

1−𝑏𝑙𝜅𝑙
,                             (9) 

 

 while the real part gives  

 

    

   

2 ( ) 2 ( )

3 2
( ) ( ) ( ) 0.

l l

l l l l l l l l

N
l n l

l ln

n l

k a b v U a b U

c U U U

  







    

 
  
 


   (10) 

 

 Using the balancing principle leads to  

 

𝑈(𝑙) = 𝑈(𝑛)
 

 

Consequently, Eq. (10) reduces to  

 

    

 

2 ( ) 2 ( )

3
( ) 0.

l l

l l l l l l l l

N
l

l ln

n l

k a b v U a b U

c U

  







    

 
  

 


 (11) 

 

 Balancing 𝑈(𝑙) ′′
 with 𝑈(𝑙) 3

 in Eq. (11) gives 𝑀 = 1. 
Consequently we reach  

 

𝑈(𝑙)(𝜉) = 𝑠0

(𝑙)
+ 𝑠1

(𝑙)
(

𝜓′ (𝜉)

𝜓 (𝜉)
) , 𝑠1

(𝑙)
≠ 0.      (12) 

 

Substituting Eq. (12) in Eq. (11) and then setting the 

coefficients of 𝜓−𝑗(𝜉), 𝑗 = 0,1,2,3, to zero, then we 

obtain a set of algebraic equations involving 𝑠0

(𝑙)
, 𝑠1

(𝑙)
, 𝑘, 

𝜅𝑙 , 𝑣 and 𝜔𝑙  as follows: 

 

𝜓−3
 coeff.:  

 

 
3

( ) 2 ( )2

1 12 ( ) 0,
N

l l

l l l ln

n l

s k a b v s c 



  
     

  
     (13) 

 

 𝜓−2
 coeff.:  

 

( ) 2 ( ) ( )

1 0 13 ( ) 0,
N

l l l

l l l ln

n l

s k b v a s s c     



  
     

  
      (14) 

 

 𝜓−1
 coeff.:  

 

2 ( )2

0

( )

1

2

3

0,

( )

N
l

l l l ln

n ll

l l l l

l l

a s c

s
b

k a b v

 


  








   
      

       
 
   


      (15) 

 

 𝜓0
 coeff.:  

 

( ) 2 ( )2

0 0 ( 1) 0.
N

l l

l l l ln l l

n l

s a s c b   


  
       

  
         (16) 

 

 Solving this system, we obtain  
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2
( )

0

2
( )

1

,

2 ( )
,

l l l l l l l

N

l ln

n l

l l l

N

l ln

n l

a b
s

c

k b v a
s

c

   









 
 












        (17) 

 and  

 

𝜓′′ = √
2(𝑎𝑙𝜅𝑙

2−𝑏𝑙𝜅𝑙𝜔𝑙+𝜔𝑙)

𝑘2 (𝑏𝑙𝑣−𝑎𝑙)
𝜓′ ,              (18) 

 

𝜓′′′ =
2(𝑎𝑙𝜅𝑙

2−𝑏𝑙𝜅𝑙𝜔𝑙+𝜔𝑙)

𝑘2 (𝑏𝑙𝑣−𝑎𝑙)
𝜓′

                  (19) 

 

 From Eqs. (18) and (19), we can deduce that  

 

𝜓′ = √
𝑘2 (𝑏𝑙𝑣−𝑎𝑙)

2(𝑎𝑙𝜅𝑙
2−𝑏𝑙𝜅𝑙𝜔𝑙+𝜔𝑙)

𝑘1𝑒
√

2(𝑎𝑙𝜅𝑙
2−𝑏𝑙𝜅𝑙𝜔𝑙+𝜔𝑙)

𝑘2(𝑏𝑙𝑣−𝑎𝑙)
𝜉

,  

                                                                                    (20) 

 and  

𝜓 =
𝑘2 (𝑏𝑙𝑣−𝑎𝑙)

2(𝑎𝑙𝜅𝑙
2−𝑏𝑙𝜅𝑙𝜔𝑙+𝜔𝑙 )

𝑘1𝑒
√

2(𝑎𝑙𝜅𝑙
2−𝑏𝑙𝜅𝑙𝜔𝑙+𝜔𝑙)

𝑘2(𝑏𝑙𝑣−𝑎𝑙)
𝜉

+

𝑘2,  

                                                                                    (21) 

 

 where 𝑘1 and 𝑘2 are constants of integration. 

Substituting Eq. (20) and Eq. (21) into Eq. (12), we 

obtain following the following exact solution to Eq. (5)  
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( )
,l l li x t

e
    

                                                                                           

(22) 

 

If we set  

 

 
 2

02

2
2

( )

1 22

2
,  1,

( )

l l l l l l

l l

a b

l l l l l l k b v a

l l

a b
k e k

k b v a

   
   

 


 

  


 

 we obtain: 

 

(i) When  

(𝑏𝑙𝑣 − 𝑎𝑙)(𝑎𝑙𝜅𝑙
2 − 𝑏𝑙𝜅𝑙𝜔𝑙 + 𝜔𝑙) > 0, 

 

we have  

 
 

2
( )

2

02

( )

( , )  tanh

2
( )

( )

,l l l

l l l l l l l

N

l ln

n l

l l l l l l

l l

i x t
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c
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e
  

   



   




  

 
 



  
  
 
 





     (23) 

  

  
 

2
( )

2

02

( )

( , )  coth

2
( )

( )

,l l l

l l l l l l l

N

l ln

n l

l l l l l l

l l

i x t

a b
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c
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k x vt

k b v a

e
  

   



   




  

 
 



  
  
 
 





     (24) 

  

 where (23) and (24) represent dark soliton and singular 

soliton solutions respecively. 

 

(ii) When  

  

(𝑏𝑙𝑣 − 𝑎𝑙)(𝑎𝑙𝜅𝑙
2 − 𝑏𝑙𝜅𝑙𝜔𝑙 + 𝜔𝑙) < 0, 

 

we have the following periodic singular solutions:  

 

 
 

2
( )

2

02

( )

( , )  tan

2
( )

( )

,l l l

l l l l l l l

N

l ln

n l

l l l l l l

l l

i x t

a b
q x t

c

a b
k x vt

k b v a

e
  

   



   




  

  
 



   
  
 
 





   (25) 

  

 

 
 

 

2
( )

2

02

( )

( , )  cot

2
( )

( )

,l l l

l l l l l l l

N

l ln

n l

l l l l l l

l l

i x t

a b
q x t

c

a b
k x vt

k b v a

e
  

   



   




  

  




   
  
 
 





  (26) 

  

where 𝑣 is given by Eq. (9) and 𝜔 is an arbitrary constant. 
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3.2 Parabolic law nonlinearity  

 

For parabolic law nonlinearity, DWDM model 

extends to:  

 

  

2 2
( ) ( ) ( ) ( ) ( ) ( )

4 2 2 2
( ) ( ) ( ) ( ) ( ) 0,

N
l l l l n l

t l xx l xt l ln

n l

N
l n n l l

l ln ln

n l

iq a q b q c q q q

d q q q q q



 





 
     

 

 
   

 





                                                                                    

(27) 

 

For 1 ≤ 𝑙 ≤ 𝑁. In (27), SPM terms are the 

coefficients of 𝑐𝑙  and 𝑑𝑙 , while XPM coefficients are 

𝛼𝑙𝑛, 𝛽𝑙𝑛 and 𝛾𝑙𝑛 , while the remaining parameters have 

the same definition as in Kerr law nonlinear medium. In 

mathematical physics equations (5) and (27) fall under 

the category of nonlinear evolution equation (NLEE).  

In order to solve Eq. (27), we use the following 

wave transformation  

 

𝑞(𝑙)(𝑥,𝑡) = 𝑈(𝑙)(𝜉)𝑒𝑖Φ(𝑥,𝑡)
              (28) 

 

where  

 

𝜉 = 𝑘(𝑥 − 𝑣𝑡),                                (29) 

 

and  

 

Φ(𝑥,𝑡) = −𝜅𝑙𝑥 + 𝜔𝑙𝑡 + 𝜃𝑙 .             (30) 

 

Substituting Eq. (28) into Eq. (27) and then 

decomposing into real and imaginary parts yields a pair 

of relations. The imaginary part gives  

 

𝑣 =
𝑏𝑙𝜔𝑙−2𝑎𝑙𝜅𝑙

1−𝑏𝑙𝜅𝑙
,                             (31) 

 

 while the real part gives  

 

    

     

   

2 ( ) 2 ( )

3 2 5
( ) ( ) ( ) ( )

4 2
( ) ( ) ( ) ( )3 0.
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 (32) 

  

Using the balancing principle leads to  

 

𝑈(𝑙) = 𝑈(𝑛)
 

 

Consequently, Eq. (32) reduces to  

  

    

     

2 ( ) 2 ( )

3 5
( ) ( ) 0.
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l l l l l l l l

N N
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l ln l ln ln
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                                                                                           (33) 

  

Set  

𝑈(𝑙) = 𝑉(𝑙)
1

2                                 (34) 

 

so that (33) transforms to  

 

    

 

2
2 ( ) ( ) ( ) 2 ( )2
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4 4 0.
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(35)                                                  

  

Balancing 𝑉(𝑙)𝑉(𝑙) ′′
 with 𝑉(𝑙) 4

 in Eq. (35) gives 

𝑀 = 1. Consequently we reach  

 

𝑉(𝑙)(𝜉) = 𝑠0

(𝑙)
+ 𝑠1

(𝑙)
(

𝜓′(𝜉)

𝜓(𝜉)
) , 𝑠1

(𝑙)
≠ 0.       (36) 

 

Substituting Eq. (36) in Eq. (35) and then setting the 

coefficients of 𝜓−𝑗(𝜉), 𝑗 = 0,1,2,3, to zero, then we 

obtain a set of algebraic equations involving 𝑠0

(𝑙)
, 𝑠1

(𝑙)
, 𝑘, 

𝜅𝑙 , 𝑣 and 𝜔𝑙  as follows: 
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 coeff.:  
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Solving this system, we obtain  
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 𝜔𝑙 =

16𝑎𝑙𝜅𝑙
2(𝑑𝑙+∑  𝑁

𝑛≠𝑙
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and  
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From Eqs. (43) and (44), it is possible to deduce  
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and  
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where 𝑘1 and 𝑘2 are constants of integration. Substituting 

Eq. (45) and Eq. (46) into Eq. (36), we obtain the following 

exact solution to Eq. (27)  
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If we set  
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we obtain: 
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 where 𝑣 is given by Eq. (31) and  

 {𝑑𝑙 + ∑  𝑁
𝑛≠𝑙 (𝛽𝑙𝑛 + 𝛾𝑙𝑛 )}(𝑏𝑙𝑣 −

𝑎𝑙) > 0.       (50) 

 

Equations (48) and (49) represent dark and singular 

soliton solutions respectively. 

 

 

4. Conclusions 

 

This paper otained soliton solutions  to DWDM 

system with Kerr and parabolic law nonlinearity. The 

modified simple equation method was the integration 

algorithm adopted in the paper. Both dark and singular 

soliton solutions are obtained with the corresponding 

constraint conditions for the existence of these solitons. 

The drawback of this scheme is that no bright soliton 

solutions are obtained for any of the two nonlinearities. 

Nevertheless, this scheme stands on a strong footing to study 

future projects such as dispersive solitons, metamaterials, 

metasurfaces and others. The results of those research will 

be disseminated elsewhere. 
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