# Z-scan measurement of optical nonlinearity of the tetracarbonyl(2,2'-bipyridyl)chromium(0) complex

M. D. ZIDAN<sup>\*,a</sup>, M. M. AL-KTAIFANI<sup>b</sup>, A. ALLAHHAM<sup>a</sup>

<sup>a</sup>Department of Physics, Atomic Energy Commission, P. O. Box 6091, Damascus, Syria <sup>b</sup>Department of Radioisotope, s Atomic Energy Commission, P. O. Box 6091, Damascus, Syria

The optical nonlinearity of the tetracarbonyl(2,2'-bipyridyl)chromium(0) in chloroform solution was investigated utilizing zscan technique. The basic parameters were estimated from the fitting of the experimental data, including the nonlinear coefficient ( $\beta$ ), the nonlinear refractive index ( $n_2$ ), the cross section of absorption ground-state ( $\sigma_g$ ), the cross section of absorption excited-state ( $\sigma_{ex}$ ) and thermo-optic coefficient. The resulting values  $\sigma_{ex} >> \sigma_g$  have confirmed that the studied compound has the property of reverse saturable absorption (RSA) mechanism. Our results show that the value of  $\beta$  is negative; it decreases with increasing the input power irradiance ( $I_0$ ) and the variation of nonlinear refractive index ( $n_2$ ) due to thermal effect. The tetracarbonyl (2,2'-bipyridyl)chromium(0) might have a potential application in the optical limiting field.

(Received September 24, 2017; accepted June 7, 2018)

Keywords: Tetracarbonyl (2,2'-bipyridyl)chromium(0), Organometallic complex, Z-scan technique

## 1. Introduction

Organometallic materials with large third-order nonlinear optical susceptibility have considerable attentions due to their potential applications in various optoelectronic devices [1-4]. As a result of their ease in chemical alteration and reduction in cost, these materials may replace the typical inorganic NLO crystals [5]. In organometallic complexes, the d electrons of the transition metal center have usually the appropriate energy and symmetry to be involved in delocalization with  $\pi$ -electron system of the organic ligand. In such metal-ligand (ML) system, the electrons are free to move, the nonlinearity is raised from the interaction between light and the free electrons within the ML system [5].

The single beam z-scan technique [6-7] is considered to be an accurate experimental method to determine both nonlinear absorption ( $\beta$ ) and refractive index ( $n_2$ ). The previous works have concentrated on the synthesis and characterization properties of organometallic compounds. But, limited number of articles was reported on the nonlinearity of ML system using z-scan technique [8-14].

As we are currently interested to explore the 3rd nonlinear optical (NLO) properties of organometallic complexes, and we have recently reported the NLO properties of the tetracarbonyl(2,2'-bipyridyl)molybdenum(0) [15], 1,1'-Methylenedipyridinium tetrachloridocuprate(II) [16] and tris(2',2-bipyridyl)iron(II) tetrafluoroborate [17]. In this article, we present the 3rd nonlinear optical (NLO) properties of the organometallic complex "tetracarbonyl(2,2'-bipyridyl)chromium(0) in chloroform (CHCl<sub>3</sub>) solution" using z-scan technique at 635 nm wavelength. To the best of our knowledge, no reports are available in literature, regarding the NLO properties of the

studied complex. We can claim the novelty of our work is study of the new prepared tetracarbonyl(2,2'bipyridyl)chromium(0) complex using z-scan technique. Although, it is considered as an old technique, but it has been used as simple method to determine the nonlinear optical parameters of new molecules. This leads to find the figures of merit of the nonlinear parameter of the chromium complex. This kind of study gives a strong indication to use such chromium complex in the field of nonlinear optical application.

#### 2. Experimental techniques

The tetracarbonyl(2,2'-bipyridyl)chromium(0) was prepared according to the reported method in ref. [18] as follow: A mixture of hexacarbonylchromium(0) (0.55 g, 2.50 mmol) and (2,2'-bipyridyl) (0.40 g, 2.56 mmol) was refluxed in toluene (25 ml) under N2 atmosphere for 2 hours. A powdery precipitate was obtained on cooling, which was filtered off and washed with hexane  $(3 \times 5 \text{ml})$ dried in vacuo to give tetracarbonyl(2,2'and bipyridyl)chromium(0) as a dark orange powder (0.4 g, 50 %). Fig. 1 depicts the molecular structure of tetracarbonyl(2,2'-bipyridyl)chromium(0). The Ultraviolet-visible (UV-Vis) spectrum of the sample in the range of 230- 700 nm was acquired by the UV-3101 PC Shimadzu Spectrophotometer. The absorption spectrum of tetracarbonyl(2,2'-bipyridyl)chromium(0) shows three characteristic peaks centred at 240, 305 and 410 nm (Fig. 2). The notable longer wave length shifting of absorption bands of the complex comparing to 2,2'-bipyridyl and  $Cr(CO)_6$  is readily attributed to the pronounced decrease of energy difference between the related HOMO and LUMO states of the complex. The formation of the complex makes the two rings of the 2,2'-bipyridyl more coplanar, which augments the aromatic conjugation of the bedentate 2,2'-bipyridyl ligand in the complex and enhances significantly the delocalization of  $\pi$ -electrons of the complex. The same observation was reported for the analogous complex tetracarbonyl(2,2'-bipyridyl)molybednum(0) [19,15].

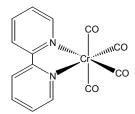



Fig. 1. The structure of tetracarbonyl(2,2'bipyridyl)chromium(0).

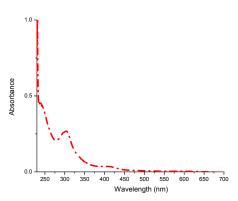



Fig. 2. UV-vis spectrum of tetracarbonyl(2,2'bipyridyl)chromium(0).

The experimental setup is similar to our previous work [20]. The excitation source was a linearly polarized TEM<sub>00</sub> Gaussian beam of diode laser. The laser model is CUBE<sup>TM</sup> Diode Laser System, Coherent- 635-3QE, it works only in CW regime at  $\lambda = 635$ nm up to 16.4 mW. All the parameters used in the present experiment were mentioned in our previous work [15]. Fig. 3 shows the schematic of the z-scan technique. The sample cell was 2 mm thick quartz which was fixed on a computercontrolled translation stage is precisely moved through the focal area of the beam over a length of 6 cm. A power meter (Thorlabs PM300E) was used to measure the reference beam and transmitted beam powers. All the experimental units were control by a computer for further data processing.

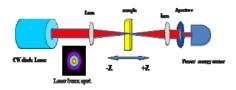



Fig. 3. The schematic of the z-scan technique.

#### 3. Results and discussion

To evaluate the nonlinear coefficients of tetracarbonyl(2,2'-bipyridyl)chromium(0) in chloroform solution, z-scan experiments in open aperture (OA) and closed aperture (CA) configurations were carried out for input intensity of  $I_0$ = 903 W/cm<sup>2</sup>.

Fig. 4 shows the OA results of the tetracarbonyl(2,2'bipyridyl)chromium(0) in CHCl<sub>3</sub> at a concentration of  $10^{-3}$ *M* at different input irradiance (I<sub>0</sub>). The shape of the curve in Fig. 4 showing a decrease in the value of transmittance around the z=0 with an increase of input intensity is the characteristic signature of reverse saturable absorption (RSA) or positive nonlinear absorption. By studying the UV-Vis spectrum of tetracarbonyl(2,2'-bipyridyl) chromium(0), it seems there is no linear absorption nearby the spectral range 635 nm. This suggests the possibility of occurrence of two photon absorption process in our sample. The RSA process was explained on the basis of classical five - level model of organic molecules with extended  $\pi$ - electron systems [15, 21].

The  $\beta$  coefficient obtained from the fitting curve (Solid line) of the experimental data (The symbols) of OA data of normalized transmittance by the equations 1-3 [6-7]:

$$T(z) = \sum_{m=0}^{\infty} \frac{(-q_0)^m}{(m+1)^{\frac{3}{2}}}$$
(1)

For  $q_0 < 1$ , Where term  $q_0(z)$  is function of  $I_0$ ,  $L_{eff}$  and  $\beta$ :

$$q_{0}(z) = \frac{I_{0} L_{eff} \beta}{(1 + \frac{z^{2}}{z_{0}^{2}})}$$
(2)

Solving the summation and for  $\alpha_0 \ll 1$ ;

$$T(z) = 1 - \frac{(I_0 L_{eff} \beta)}{[2^{\frac{3}{2}}(1 + \frac{z^2}{z_0^2})]}$$
(3)

In the above equations (1-3),  $L_{eff} = (1 - \exp(-\alpha_0 L))/\alpha_0$ is the effective thickness of the sample, L,  $\alpha_0$ ,  $z_0 = \pi \frac{2}{0}/\lambda$ and  $I_0 = 903$  W/cm<sup>2</sup> are the thickness of the sample, the linear absorption coefficient, diffraction length and the intensity of the beam at focus z = 0.

It well-known in the nonlinear regime, the absorption will be a nonlinear function of the excitation intensity  $I_0$  at the focus point, z = 0. If the nonlinear absorption coefficient ( $\beta$ ) is positive, it increases with increasing the input power ( $I_0$ ), but if the value of  $\beta$  is negative, it decreases with increasing the input power irradiance ( $I_0$ ) [22]. Our result in figure 5 shows the relation between the excitation intensity  $I_0$  and the nonlinear absorption coefficient  $\beta$ . The  $\beta$  decreases with increasing of the  $I_0$ , which means that the nonlinearity behavior resulting of two photons absorption (TPA) and excited state absorption (ESA) assisted RSA process according to the literature [23, 24]. The  $\sigma_g$  and the  $\sigma_{ex}$  were calculated according to similar method [20]. Their values were found to be  $\sigma_g$ = 2.76×10<sup>-18</sup> cm<sup>2</sup> and  $\sigma_{ex}$ =3.95×10<sup>-13</sup> cm<sup>2</sup>. The resulting values,  $\sigma_{ex}$ >>  $\sigma_g$  confirmed that the nonlinearity here was mostly associated with RSA.

To obtain the  $n_2$  of the tetracarbonyl(2,2'bipyridyl)chromium(0) in CHCl<sub>3</sub> at a concentration of  $10^{-3}$ *M*, the on-axis nonlinear phase shift  $\Delta\phi_0$  at the focus point was determined through fitting the pure *nonlinear refraction curves* (Fig. 6) with the following equation [6-7]:

$$T(z,\Delta\phi) = 1 - \frac{4\,\Delta\phi_0 X}{(X^2 + 9) (X^2 + 1)} \tag{4}$$

where  $X = (Z/Z_0)$ , and T is the normalized transmittance in the fitting curves (The solid line). Then, the coefficient,  $n_2$ , was deduced using the equation 5, [6-7]:

$$n_{2} = \frac{\lambda \Delta \phi_{0}}{2 \pi I_{0} L_{eff}}$$

$$\tag{5}$$

From knowledge of the two coefficients  $n_2$  and  $\beta$ , one can compute the corresponding of the third-order nonlinear optical susceptibility,  $\chi^3$ , by the following relations [6-7]:

$$R |\chi^{3} (esu)| = (10^{-4} \varepsilon_{0} c^{2} n_{0}^{2} / \pi) n_{2} (cm^{2} / w)$$
 (6)

Im 
$$|\chi^3 (esu)| = (10^{-2} \epsilon_0 c^2 n_0^2 \lambda / 4\pi^2) \beta (cm/w)$$
 (7)

where  $\varepsilon_0$  is the vacuum permittivity and c is the speed of light in vacuum.

The values of  $\alpha_0$  and the  $n_0$  obtained in similar method [20]. All the obtained values of  $\alpha_0$ ,  $n_0$ ,  $n_2$ ,  $\beta$ ,  $|\text{Re }\chi^3|$  and  $|\text{Im }\chi^3|$  in this work are listed in Table 1.

shows that the 6 tetracarbonyl(2,2'-Fig. bipyridyl)chromium(0) exhibiting a peak - valley configuration. This suggests that the sign of n<sub>2</sub> negative, also, the sample can be considered as self-defocusing material around 635 nm. The calculated value of n<sub>2</sub> may have contributions of distinct origins, such as electronic  $(n_2^e)$  or thermal effects (n<sup>th</sup><sub>2</sub>). Hence, one can separate such contributions by the relation:  $n_2 = n_2^e + n_2^{th}$ . The thermal and electronic nonlinearities will have similar effects in z-scan measurements (nonlinear refractive index n<sub>2</sub>) but their underlying physical mechanisms are completely different. In the thermal component the sample absorbs incident light, heats up and the index of refraction of the medium is modified due to the increase of temperature. But, in the electronic component the incident light induces nonlinear electronic polarization of the medium and the index of refraction is modified due to the direct interaction of the electromagnetic wave with electrons in the sample. In the electronic component (n<sup>e</sup><sub>2</sub>) the effect can be described in terms of the third order optical susceptibility Re  $|\chi^3|$ . However, the defocusing effect is raised from the absorption of the CW laser beam through an absorbing medium. This led to variation of the refractive index, which acts as a thermal lens [25-27].

The thermal nonlinearity (n<sub>2</sub>) is related with the thermo-optic coefficient  $\left(\frac{dn}{dT}\right)$  by the equation 8 [28]:  $\left(\frac{dn}{dT}\right) = \frac{4 n_2 \kappa}{\alpha_0 \omega_0^2}$  (8)

where  $\kappa$  is the thermal conductivity of the solvent ( $\kappa$ = 0.129 *W/m K*). Using Equation 8, the value of the thermooptic coefficient  $\left(\frac{dn}{dT}\right)$  of tetracarbonyl(2,2'-

bipyridyl)chromium(0) in CHCl<sub>3</sub> has been found to be  $9.11 \times 10^{-5} (\kappa^{-1})$ .

The same experimental conditions were repeated with the solvent to trace any signal, but nothing was found. Our reported values of  $n_2$  and  $\beta$  of the tetracarbonyl(2,2'bipyridyl)chromium(0) compound in Table 1 can be compared with the recently reported values in literature for similar molecules with CW laser excitation [13, 29-31]. The 3<sup>rd</sup> optical nonlinearity in the tetracarbonyl(2,2'bipyridyl)chromium(0) complex due to the electronic states formed by  $\pi \rightarrow \pi^*$  and  $d \rightarrow d^*$  transitions, and it is consider to be very promising candidate [15, 32-33].

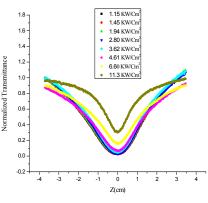



Fig. 4. Open–aperture z-scan data of  $10^3 M$  of tetracarbonyl(2,2'-bipyridyl)chromium(0) in chloroform at different input powers.

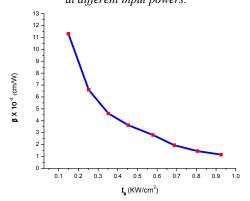



Fig. 5. Nonlinear absorption coefficient β versus on-axis input intensity I<sub>0</sub> of tetracarbonyl(2,2'bipyridyl)chromium(0) in chloroform.

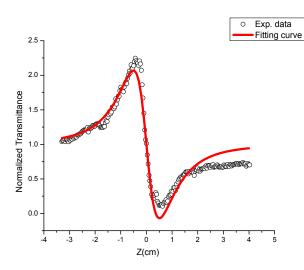



Fig. 6. Pure nonlinear refraction curve of  $10^{-3}$  M of tetracarbonyl(2,2'-bipyridyl)chromium(0) in chloroform.

Table 1. The linear and nonlinear optical parameters of tetracarbonyl(2,2'-bipyridyl)chromium(0) at concentration of  $10^{-3} M$ .

| $\alpha_0 (\mathrm{cm}^{-1})$ | n <sub>0</sub> | $n_2 \times 10^{-7}$ | $\boldsymbol{\beta} \times 10^{-2}$ | <b>Re</b> $(\chi^3) \times 10^{-5}$ (esu) | $Im(\chi^3) \times 10^{-4}$ (esu) |
|-------------------------------|----------------|----------------------|-------------------------------------|-------------------------------------------|-----------------------------------|
|                               |                | (cm <sup>2</sup> /W) | (cm/W)                              |                                           |                                   |
| 1.66                          | 1.441          | -3.39                | 1.06                                | 1.78                                      | 2.82                              |

## 4. Conclusions

summary, the organometallic complex In "tetracarbonyl(2,2'-bipyridyl)chromium(0)" was studied by z-scan method using a diode Laser ( $\lambda$ = 635 nm). The values of  $\alpha_0$ ,  $n_0$ ,  $n_2$ ,  $\beta$ , Re  $|\chi^3|$ ,  $|\text{Im}\chi^3|$  and the thermo-optic coefficient were determined. As expected, the combination of the organic fragment 2,2'-bipyridyl and the inorganic part Cr(CO)<sub>4</sub> led to increase the nonlinearity in the chromium complex. The values of  $\beta$  are recorded at different input powers (I<sub>0</sub>), it was found that the values of  $\beta$  decrease with increasing the values of  $I_0$  and the changes in the nonlinear refractive index  $(n_2)$  due to thermal effect. As seen in the CA data, the sample exhibited a peak-valley configuration, this mean that the sign of the  $n_2$  is negative and this complex should be considered as self-defocusing material around  $\lambda$ =635 nm.

#### Acknowledgements

We would like to thank Prof. I. Othman, Prof. A. H. Al-Rayyes, and Prof. M. K. Sabra their help.

### References

[1] S. Tekin, U. Kürüm, M. Durmus, H. G. Yaglioglu, T.

Nyokong, A. Elmali, Opt. Comm. 283, 4749 (2010).

- [2] Y-D Zhang, Z-Y Zhao, C-B Yao, L. Yang, J. Li, P. Yuan, Opt. Laser Technol. 58, 207 (2014).
- [3] H. Fan, X. Wang, Q. Ren, X. Zhao, G. Zhang, J. Chen, D. Xu, G. Yu, Z. Sun, Opt. Laser Technol. 42, 732 (2010).
- [4] C. Yao, Y. Zhang, H. Yin, Q. Meng, C. Yu, J. Li, P. Yuan, Chem. Phys. Lett. 576, 35 (2013).
- [5] T. Huang, Z. Hao, H. Gong, Z. Liu, S. Xiao, S. Li, Y. Zhai, S. You, Q. Wang, J. Qin, Chem. Phys. Lett. 451, 213 (2008).
- [6] M. Sheik-Bahae, A. A. Said, E. W. Van Stryland, Opt. Lett. 14, 955 (1989).
- M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, IEEE J. Quantum Electron QE-26, 760 (1990).
- [8] K. B. Manjunatha, R. Dileep, G. Umesh, B. Ramachandra 105, 173 (2013).
- [9] T. C. Sabari Girisun, S. Dhanuskodi, G. Vinitha, Mat. Chem. Phys. 129, 9 (2011).
- [10] H. Fan, Q. Ren, X. Wang, T. Li, J. Sun, G. Zhang, D. Xu, G. Yu, Z. Sun, Natural Science 1, 136 (2009).
- [11] Q. Ren, X. B. Sun, X. Q. Wang, G. H. Zhang, X. D. Yang, F. J. Zhang, H. I. Yang, Y. T. Chow, D. Xu, Appl. Phys. A. **90**, 685 (2008).
- [12] J. Sun, W. F. Guo, X. Q. Wang, G. H. Zhang, X. B. Sun, L. Y. Zhu, Q. Ren, D. Xu, Opt. Comm. 280, 183 (2007).
- [13] M. D. Zidan, M. Alktaifani, A. Allahham, Optik 126,

1491 (2015).

- [14] H. Chen, Z. Li, L. Cheng, J. Liu, X. Chen, J. Li, Cryst. Growth Des. 8, 4355 (2008).
- [15] M. D. Zidan, M. M. Al-Ktaifani, A. Allahham, Optik 127, 2570 (2016).
- [16] M. D. Zidan, M. Alktaifani, A. Allahham, Optik 127, 4443 (2016).
- [17] M. D. Zidan, M. M. Al-Ktaifani, A. Allahham, Opt. Laser Technol. 90, 174 (2017).
- [18] M. H. B. Stiddard, J. Chem. Soc. Vol. 0, 4712 (1962). DOI: 10.1039/JR9620004712
- [19] J. Tory, B. Setterfield-Price, R. A. W. Dryfe, Frantisek Hartl, Chem. Electro Chem. 2, 213 (2015).
- [20] M. D. Zidan, A. Arfan, A. Allahham, Opt. Laser Technol. 86, 79 (2016).
- [21] N. K. Siji Narendran, R. Soman, C. Arunkumar, K. Chandrasekharan, Spectrochimica Acta Part A: Mo lecular and Biomolecular Spectroscopy 136, 838 (2015).
- [22] F. Nasseri, E. Rokhsat, D. Dorranian, Optik 127, 6813 (2016).
- [23] M. Gantenbein, Terminally diisocyano functionalized and rotationally restricted biphenyl systems, M.Sc. Thesis, Switzerland, University of Basel, 2010.
- [24] S. Pramodini, P. Poornesh, Opt. Laser Technol. 62, 12 (2014).
- [25] F. Z. Henari, P. S. Patil, Opt. Photonics Journal 4, 182 (2014).

- [26] S. Zafar, Z. H. Khan, M. S. Khan, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 114, 164 (2013).
- [27] F. Z. Henari, W. J. Blau, Proc. SPIE 2854, 174 (1996).
- [28] H. L. Saadon, B. Ali, A. A. Al-Fregi, Opt. Laser Technol. 58, 33 (2014).
- [29] S. Pramodini, P. Poornesh, Y.N. Sudhakar, M. Selva Kumar, Opt. Commun. 293, 125 (2013).
- [30] I. Papagiannouli, K. Iliopoulos, D. Gindre, B. Sahraoui, O. Krupka, V. Smokal, A. Kolendo, S. Couris, Chem. Phys. Lett. 554, 107 (2012).
- [31] M. D. Zidan, A. Arfan, A. Allahham, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 190, 135 (2018).
- [32] S. Wang, W. Huang, T. Zhang, H. Yang, Q. Gong, Y. Okuma, M. Horikiri, Y. F. Miura, Appl. Phys. Lett. 75, 1845 (1999).
- [33] I. Guezguez, A. Ayadi, K. Ordon, K. Iliopoulos, D. G. Branzea, A. Migalska-Zalas, M. Makowska-Janusik, Ab. El-Ghayoury, B. Sahraoui, J. Phys. Chem. C 118, 7545 (2014).

\*Corresponding author: PScientific8@aec.org.sy